// Copyright (c) 2006, Google Inc. // All rights reserved. // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following disclaimer // in the documentation and/or other materials provided with the // distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived from // this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. // --- // Author: Ray Sidney // Revamped and reorganized by Craig Silverstein // // This file contains the implementation of all our command line flags // stuff. #include "config.h" #include <stdio.h> // for snprintf #include <ctype.h> #include <errno.h> #include <string.h> #include <assert.h> #include <pthread.h> #include <fnmatch.h> #include <pthread.h> #include <string> #include <map> #include <vector> #include <utility> // for pair<> #include <algorithm> #include "google/gflags.h" #ifndef PATH_SEPARATOR #define PATH_SEPARATOR '/' #endif // Work properly if either strtoll or strtoq is on this system #ifdef HAVE_STRTOLL # define strtoint64 strtoll # define strtouint64 strtoull #elif HAVE_STRTOQ # define strtoint64 strtoq # define strtouint64 strtouq #else // Neither strtoll nor strtoq are defined. I hope strtol works! # define strtoint64 strtol # define strtouint64 strtoul #endif using std::string; using std::map; using std::vector; using std::pair; // Special flags, type 1: the 'recursive' flags. They set another flag's val. DEFINE_string(flagfile, "", "load flags from file"); DEFINE_string(fromenv, "", "set flags from the environment [use 'export FLAGS_flag1=value']"); DEFINE_string(tryfromenv, "", "set flags from the environment if present"); // Special flags, type 2: the 'parsing' flags. They modify how we parse. DEFINE_string(undefok, "", "comma-separated list of flag names that it is okay to specify " "on the command line even if the program does not define a flag " "with that name. IMPORTANT: flags in this list that have " "arguments MUST use the flag=value format"); _START_GOOGLE_NAMESPACE_ // There are also 'reporting' flags, in commandlineflags_reporting.cc. static const char kError[] = "ERROR: "; // The help message indicating that the commandline flag has been // 'stripped'. It will not show up when doing "-help" and its // variants. The flag is stripped if STRIP_FLAG_HELP is set to 1 // before including base/commandlineflags.h (or in // base/global_strip_options.h). const char kStrippedFlagHelp[] = "\001\002\003\004 (unknown) \004\003\002\001"; // Indicates that undefined options are to be ignored. // Enables deferred processing of flags in dynamically loaded libraries. static bool allow_command_line_reparsing = false; static bool logging_is_probably_set_up = false; // google3-specific // This is used by the unittest to test error-exit code void (*commandlineflags_exitfunc)(int) = &exit; // from stdlib.h // -------------------------------------------------------------------- // FlagValue // This represent the value a single flag might have. The major // functionality is to convert from a string to an object of a // given type, and back. // -------------------------------------------------------------------- class FlagValue { public: FlagValue(void* valbuf, const char* type); ~FlagValue(); bool ParseFrom(const char* spec); string ToString() const; private: friend class CommandLineFlag; friend class FlagSaverImpl; // calls New() template <typename T> friend T GetFromEnv(const char*, const char*, T); enum ValueType {FV_BOOL, FV_INT32, FV_INT64, FV_UINT64, FV_DOUBLE, FV_STRING}; const char* TypeName() const; bool Equal(const FlagValue& x) const; FlagValue* New() const; // creates a new one with default value void CopyFrom(const FlagValue& x); void* value_buffer_; // points to the buffer holding our data bool we_own_buffer_; // true iff we new-ed the buffer ValueType type_; // how to interpret value_ FlagValue(const FlagValue&); // no copying! void operator=(const FlagValue&); }; // This could be a templated method of FlagValue, but doing so adds to the // size of the .o. Since there's no type-safety here anyway, macro is ok. #define VALUE_AS(type) *reinterpret_cast<type*>(value_buffer_) #define OTHER_VALUE_AS(fv, type) *reinterpret_cast<type*>(fv.value_buffer_) #define SET_VALUE_AS(type, value) VALUE_AS(type) = (value) FlagValue::FlagValue(void* valbuf, const char* type) : value_buffer_(valbuf) { if (strcmp(type, "bool") == 0) type_ = FV_BOOL; else if (strcmp(type, "int32") == 0) type_ = FV_INT32; else if (strcmp(type, "int64") == 0) type_ = FV_INT64; else if (strcmp(type, "uint64") == 0) type_ = FV_UINT64; else if (strcmp(type, "double") == 0) type_ = FV_DOUBLE; else if (strcmp(type, "string") == 0) type_ = FV_STRING; else assert(false); // Unknown typename } FlagValue::~FlagValue() { switch (type_) { case FV_BOOL: delete reinterpret_cast<bool*>(value_buffer_); break; case FV_INT32: delete reinterpret_cast<int32*>(value_buffer_); break; case FV_INT64: delete reinterpret_cast<int64*>(value_buffer_); break; case FV_UINT64: delete reinterpret_cast<uint64*>(value_buffer_); break; case FV_DOUBLE: delete reinterpret_cast<double*>(value_buffer_); break; case FV_STRING: delete reinterpret_cast<string*>(value_buffer_); break; } } bool FlagValue::ParseFrom(const char* value) { if (type_ == FV_BOOL) { const char* kTrue[] = { "1", "t", "true", "y", "yes" }; const char* kFalse[] = { "0", "f", "false", "n", "no" }; for (int i = 0; i < sizeof(kTrue)/sizeof(*kTrue); ++i) { if (strcasecmp(value, kTrue[i]) == 0) { SET_VALUE_AS(bool, true); return true; } else if (strcasecmp(value, kFalse[i]) == 0) { SET_VALUE_AS(bool, false); return true; } } return false; // didn't match a legal input } else if (type_ == FV_STRING) { SET_VALUE_AS(string, value); return true; } // OK, it's likely to be numeric, and we'll be using a strtoXXX method. if (value[0] == '\0') // empty-string is only allowed for string type. return false; char* end; // Leading 0x puts us in base 16. But leading 0 does not put us in base 8! // It caused too many bugs when we had that behavior. int base = 10; // by default if (value[0] == '0' && (value[1] == 'x' || value[1] == 'X')) base = 16; errno = 0; switch (type_) { case FV_INT32: { const int64 r = strtoint64(value, &end, base); if (errno || end != value + strlen(value)) return false; // bad parse if (static_cast<int32>(r) != r) // worked, but number out of range return false; SET_VALUE_AS(int32, r); return true; } case FV_INT64: { const int64 r = strtoint64(value, &end, base); if (errno || end != value + strlen(value)) return false; // bad parse SET_VALUE_AS(int64, r); return true; } case FV_UINT64: { while (*value == ' ') value++; if (*value == '-') return false; // negative number const uint64 r = strtouint64(value, &end, base); if (errno || end != value + strlen(value)) return false; // bad parse SET_VALUE_AS(uint64, r); return true; } case FV_DOUBLE: { const double r = strtod(value, &end); if (errno || end != value + strlen(value)) return false; // bad parse SET_VALUE_AS(double, r); return true; } default: { assert(false); // unknown type return false; } } } string FlagValue::ToString() const { char intbuf[64]; // enough to hold even the biggest number switch (type_) { case FV_BOOL: return VALUE_AS(bool) ? "true" : "false"; case FV_INT32: snprintf(intbuf, sizeof(intbuf), "%d", VALUE_AS(int32)); return intbuf; case FV_INT64: snprintf(intbuf, sizeof(intbuf), "%lld", VALUE_AS(int64)); return intbuf; case FV_UINT64: snprintf(intbuf, sizeof(intbuf), "%llu", VALUE_AS(uint64)); return intbuf; case FV_DOUBLE: snprintf(intbuf, sizeof(intbuf), "%.17g", VALUE_AS(double)); return intbuf; case FV_STRING: return VALUE_AS(string); default: assert(false); return ""; // unknown type } } const char* FlagValue::TypeName() const { switch (type_) { case FV_BOOL: return "bool"; case FV_INT32: return "int32"; case FV_INT64: return "int64"; case FV_UINT64: return "uint64"; case FV_DOUBLE: return "double"; case FV_STRING: return "string"; default: assert(false); return ""; // unknown type } } bool FlagValue::Equal(const FlagValue& x) const { if (type_ != x.type_) return false; switch (type_) { case FV_BOOL: return VALUE_AS(bool) == OTHER_VALUE_AS(x, bool); case FV_INT32: return VALUE_AS(int32) == OTHER_VALUE_AS(x, int32); case FV_INT64: return VALUE_AS(int64) == OTHER_VALUE_AS(x, int64); case FV_UINT64: return VALUE_AS(uint64) == OTHER_VALUE_AS(x, uint64); case FV_DOUBLE: return VALUE_AS(double) == OTHER_VALUE_AS(x, double); case FV_STRING: return VALUE_AS(string) == OTHER_VALUE_AS(x, string); default: assert(false); return false; // unknown type } } FlagValue* FlagValue::New() const { switch (type_) { case FV_BOOL: return new FlagValue(new bool, "bool"); case FV_INT32: return new FlagValue(new int32, "int32"); case FV_INT64: return new FlagValue(new int64, "int64"); case FV_UINT64: return new FlagValue(new uint64, "uint64"); case FV_DOUBLE: return new FlagValue(new double, "double"); case FV_STRING: return new FlagValue(new string, "string"); default: assert(false); return NULL; // assert false } } void FlagValue::CopyFrom(const FlagValue& x) { assert(type_ == x.type_); switch (type_) { case FV_BOOL: SET_VALUE_AS(bool, OTHER_VALUE_AS(x, bool)); break; case FV_INT32: SET_VALUE_AS(int32, OTHER_VALUE_AS(x, int32)); break; case FV_INT64: SET_VALUE_AS(int64, OTHER_VALUE_AS(x, int64)); break; case FV_UINT64: SET_VALUE_AS(uint64, OTHER_VALUE_AS(x, uint64)); break; case FV_DOUBLE: SET_VALUE_AS(double, OTHER_VALUE_AS(x, double)); break; case FV_STRING: SET_VALUE_AS(string, OTHER_VALUE_AS(x, string)); break; default: assert(false); // unknown type } } // -------------------------------------------------------------------- // CommandLineFlag // This represents a single flag, including its name, description, // default value, and current value. Mostly this serves as a // struct, though it also knows how to register itself. // -------------------------------------------------------------------- class CommandLineFlag { public: // Note: we take over memory-ownership of current_val and default_val. CommandLineFlag(const char* name, const char* help, const char* filename, FlagValue* current_val, FlagValue* default_val); ~CommandLineFlag(); const char* name() const { return name_; } const char* help() const { return help_; } const char* filename() const { return file_; } const char* CleanFileName() const; // nixes irrelevant prefix such as homedir string current_value() const { return current_->ToString(); } string default_value() const { return defvalue_->ToString(); } const char* type_name() const { return defvalue_->TypeName(); } void FillCommandLineFlagInfo(struct CommandLineFlagInfo* result); private: friend class FlagRegistry; // for SetFlagLocked() friend class FlagSaverImpl; // for cloning the values friend bool GetCommandLineOption(const char*, string*, bool*); // This copies all the non-const members: modified, processed, defvalue, etc. void CopyFrom(const CommandLineFlag& src); void UpdateModifiedBit(); const char* const name_; // Flag name const char* const help_; // Help message const char* const file_; // Which file did this come from? bool modified_; // Set after default assignment? FlagValue* defvalue_; // Default value for flag FlagValue* current_; // Current value for flag CommandLineFlag(const CommandLineFlag&); // no copying! void operator=(const CommandLineFlag&); }; CommandLineFlag::CommandLineFlag(const char* name, const char* help, const char* filename, FlagValue* current_val, FlagValue* default_val) : name_(name), help_(help), file_(filename), modified_(false), defvalue_(default_val), current_(current_val) { } CommandLineFlag::~CommandLineFlag() { delete current_; delete defvalue_; } const char* CommandLineFlag::CleanFileName() const { // Compute top-level directory & file that this appears in // search full path backwards. // Stop going backwards at kGoogle; and skip by the first slash. // E.g. // filename_where_defined = "froogle/wrapping/autowrap/clustering/**.cc" // filename_where_defined = "file/util/fileutil.cc" static const char kGoogle[] = ""; // can set this to whatever if (sizeof(kGoogle)-1 == 0) // no prefix to strip return filename(); const char* clean_name = filename() + strlen(filename()) - 1; while ( clean_name > filename() ) { if (*clean_name == PATH_SEPARATOR) { if (strncmp(clean_name, kGoogle, sizeof(kGoogle)-1) == 0) { // ".../google/base/logging.cc" ==> "base/logging.cc" clean_name += sizeof(kGoogle)-1; // past "/google/" break; } } --clean_name; } while ( *clean_name == PATH_SEPARATOR ) ++clean_name; // Skip any slashes return clean_name; } void CommandLineFlag::FillCommandLineFlagInfo( CommandLineFlagInfo* result) { result->name = name(); result->type = type_name(); result->description = help(); result->current_value = current_value(); result->default_value = default_value(); result->filename = CleanFileName(); UpdateModifiedBit(); result->is_default = !modified_; } void CommandLineFlag::UpdateModifiedBit() { // Update the "modified" bit in case somebody bypassed the // Flags API and wrote directly through the FLAGS_name variable. if (!modified_ && !current_->Equal(*defvalue_)) { modified_ = true; } } void CommandLineFlag::CopyFrom(const CommandLineFlag& src) { // Note we only copy the non-const members; others are fixed at construct time modified_ = src.modified_; current_->CopyFrom(*src.current_); defvalue_->CopyFrom(*src.defvalue_); } // -------------------------------------------------------------------- // FlagRegistry // A FlagRegistry singleton object holds all flag objects indexed // by their names so that if you know a flag's name (as a C // string), you can access or set it. If the function is named // FooLocked(), you must own the registry lock before calling // the function; otherwise, you should *not* hold the lock, and // the function will acquire it itself if needed. // -------------------------------------------------------------------- struct StringCmp { // Used by the FlagRegistry map class to compare char*'s bool operator() (const char* s1, const char* s2) const { return (strcmp(s1, s2) < 0); } }; #define SAFE_PTHREAD(fncall) do { if ((fncall) != 0) abort(); } while (0) class FlagRegistry { public: FlagRegistry() { SAFE_PTHREAD(pthread_mutex_init(&lock_, NULL)); } ~FlagRegistry() { SAFE_PTHREAD(pthread_mutex_destroy(&lock_)); } // Store a flag in this registry. Takes ownership of the given pointer. void RegisterFlag(CommandLineFlag* flag); void Lock() { SAFE_PTHREAD(pthread_mutex_lock(&lock_)); } void Unlock() { SAFE_PTHREAD(pthread_mutex_unlock(&lock_)); } // Returns the flag object for the specified name, or NULL if not found. CommandLineFlag* FindFlagLocked(const char* name); // A fancier form of FindFlag that works correctly if name is of the // form flag=value. In that case, we set key to point to flag, and // modify v to point to the value, and return the flag with the // given name (or NULL if not found). CommandLineFlag* SplitArgumentLocked(const char* argument, string* key, const char** v); // Set the value of a flag. If the flag was successfully set to // value, set msg to indicate the new flag-value, and return true. // Otherwise, set msg to indicate the error, leave flag unchanged, // and return false. msg can be NULL. bool SetFlagLocked(CommandLineFlag* flag, const char* value, FlagSettingMode set_mode, string* msg); static FlagRegistry* GlobalRegistry(); // returns a singleton registry private: friend class FlagSaverImpl; // reads all the flags in order to copy them friend void GetAllFlags(vector<CommandLineFlagInfo>*); typedef map<const char*, CommandLineFlag*, StringCmp> FlagMap; typedef FlagMap::iterator FlagIterator; typedef FlagMap::const_iterator FlagConstIterator; FlagMap flags_; pthread_mutex_t lock_; static FlagRegistry* global_registry_; // a singleton registry static pthread_once_t global_registry_once_; static int global_registry_once_nothreads_; // when we don't link pthreads static void InitGlobalRegistry(); // Disallow FlagRegistry(const FlagRegistry&); FlagRegistry& operator=(const FlagRegistry&); }; void FlagRegistry::RegisterFlag(CommandLineFlag* flag) { Lock(); pair<FlagIterator, bool> ins = flags_.insert(pair<const char*, CommandLineFlag*>(flag->name(), flag)); if (ins.second == false) { // means the name was already in the map if (strcmp(ins.first->second->filename(), flag->filename()) != 0) { fprintf(stderr, "ERROR: flag '%s' was defined more than once " "(in files '%s' and '%s').\n", flag->name(), ins.first->second->filename(), flag->filename()); } else { fprintf(stderr, "ERROR: something wrong with flag '%s' in file '%s'. " "One possibility: file '%s' is being linked both statically " "and dynamically into this executable.\n", flag->name(), flag->filename(), flag->filename()); } commandlineflags_exitfunc(1); // almost certainly exit() } Unlock(); } CommandLineFlag* FlagRegistry::FindFlagLocked(const char* name) { FlagConstIterator i = flags_.find(name); if (i == flags_.end()) { return NULL; } else { return i->second; } } CommandLineFlag* FlagRegistry::SplitArgumentLocked(const char* arg, string* key, const char** v) { // Find the flag object for this option const char* flag_name; const char* value = strchr(arg, '='); if (value == NULL) { key->assign(arg); *v = NULL; } else { // Strip out the "=value" portion from arg key->assign(arg, value-arg); *v = ++value; // advance past the '=' } flag_name = key->c_str(); CommandLineFlag* flag = FindFlagLocked(flag_name); if (flag == NULL && (flag_name[0] == 'n') && (flag_name[1] == 'o')) { // See if we can find a boolean flag named "x" for an option // named "nox". flag = FindFlagLocked(flag_name+2); if (flag != NULL) { if (strcmp(flag->type_name(), "bool") != 0) { // This is not a boolean flag, so we should not strip the "no" prefix flag = NULL; } else { // Make up a fake value to replace the "no" we stripped out key->assign(flag_name+2); // the name without the "no" *v = "0"; } } } if (flag == NULL) { return NULL; } // Assign a value if this is a boolean flag if (*v == NULL && strcmp(flag->type_name(), "bool") == 0) { *v = "1"; // the --nox case was already handled, so this is the --x case } return flag; } // Can't make this static because of friendship. inline bool TryParse(const CommandLineFlag* flag, FlagValue* flag_value, const char* value, string* msg) { if (flag_value->ParseFrom(value)) { if (msg) *msg += (string(flag->name()) + " set to " + flag_value->ToString() + "\n"); return true; } else { if (msg) *msg += (string(kError) + "illegal value '" + value + + "' specified for " + flag->type_name() + " flag '" + flag->name() + "'\n"); return false; } } bool FlagRegistry::SetFlagLocked(CommandLineFlag* flag, const char* value, FlagSettingMode set_mode, string* msg) { flag->UpdateModifiedBit(); switch (set_mode) { case SET_FLAGS_VALUE: { // set or modify the flag's value if (!TryParse(flag, flag->current_, value, msg)) return false; flag->modified_ = true; break; } case SET_FLAG_IF_DEFAULT: { // set the flag's value, but only if it hasn't been set by someone else if (!flag->modified_) { if (!TryParse(flag, flag->current_, value, msg)) return false; flag->modified_ = true; } else { *msg = string(flag->name()) + " set to " + flag->current_value(); } break; } case SET_FLAGS_DEFAULT: { // modify the flag's default-value if (!TryParse(flag, flag->defvalue_, value, msg)) return false; if (!flag->modified_) { // Need to set both defvalue *and* current, in this case TryParse(flag, flag->current_, value, NULL); } break; } default: { // unknown set_mode assert(false); return false; } } return true; } // Get the singleton FlagRegistry object FlagRegistry* FlagRegistry::global_registry_ = NULL; pthread_once_t FlagRegistry::global_registry_once_ = PTHREAD_ONCE_INIT; int FlagRegistry::global_registry_once_nothreads_ = 0; void FlagRegistry::InitGlobalRegistry() { global_registry_ = new FlagRegistry; } // We want to use pthread_once here, for safety, but have to worry about // whether libpthread is linked in or not. We declare a weak version of // the function, so we'll always compile (if the weak version is the only // one that ends up existing, then pthread_once will be equal to NULL). #ifdef HAVE___ATTRIBUTE__ // __THROW is defined in glibc systems. It means, counter-intuitively, // "This function will never throw an exception." It's an optional // optimization tool, but we may need to use it to match glibc prototypes. # ifndef __THROW // I guess we're not on a glibc system # define __THROW // __THROW is just an optimization, so ok to make it "" # endif extern "C" int pthread_once(pthread_once_t *, void (*)(void)) __THROW __attribute__((weak)); #endif FlagRegistry* FlagRegistry::GlobalRegistry() { if (pthread_once) { // means we're running with pthreads pthread_once(&global_registry_once_, &FlagRegistry::InitGlobalRegistry); } else { // not running with pthreads: we're the only thread if (global_registry_once_nothreads_++ == 0) InitGlobalRegistry(); } return global_registry_; } void FlagsTypeWarn(const char *name) { fprintf(stderr, "ERROR: Flag %s is of type bool, " "but its default value is not a boolean.\n", name); // This can (and one day should) become a compilations error //commandlineflags_exitfunc(1); // almost certainly exit() } // -------------------------------------------------------------------- // FlagRegisterer // This class exists merely to have a global constructor (the // kind that runs before main(), that goes an initializes each // flag that's been declared. Note that it's very important we // don't have a destructor that deletes flag_, because that would // cause us to delete current_storage/defvalue_storage as well, // which can cause a crash if anything tries to access the flag // values in a global destructor. // -------------------------------------------------------------------- FlagRegisterer::FlagRegisterer(const char* name, const char* type, const char* help, const char* filename, void* current_storage, void* defvalue_storage) { FlagValue* current = new FlagValue(current_storage, type); FlagValue* defvalue = new FlagValue(defvalue_storage, type); // Importantly, flag_ will never be deleted, so storage is always good. flag_ = new CommandLineFlag(name, help, filename, current, defvalue); FlagRegistry::GlobalRegistry()->RegisterFlag(flag_); // default registry } // -------------------------------------------------------------------- // GetAllFlags() // The main way the FlagRegistry class exposes its data. This // returns, as strings, all the info about all the flags in // the main registry, sorted first by filename they are defined // in, and then by flagname. // -------------------------------------------------------------------- struct FilenameFlagnameCmp { bool operator()(const CommandLineFlagInfo& a, const CommandLineFlagInfo& b) const { int cmp = strcmp(a.filename.c_str(), b.filename.c_str()); if (cmp == 0) cmp = strcmp(a.name.c_str(), b.name.c_str()); // secondary sort key return cmp < 0; } }; void GetAllFlags(vector<CommandLineFlagInfo>* OUTPUT) { FlagRegistry* const registry = FlagRegistry::GlobalRegistry(); registry->Lock(); for (FlagRegistry::FlagConstIterator i = registry->flags_.begin(); i != registry->flags_.end(); ++i) { CommandLineFlagInfo fi; i->second->FillCommandLineFlagInfo(&fi); OUTPUT->push_back(fi); } registry->Unlock(); // Now sort the flags, first by filename they occur in, then alphabetically sort(OUTPUT->begin(), OUTPUT->end(), FilenameFlagnameCmp()); } // -------------------------------------------------------------------- // SetArgv() // GetArgvs() // GetArgv() // GetArgv0() // ProgramInvocationName() // ProgramInvocationShortName() // SetUsageMessage() // ProgramUsage() // Functions to set and get argv. Typically the setter is called // by ParseCommandLineFlags. Also can get the ProgramUsage string, // set by SetUsageMessage. // -------------------------------------------------------------------- // These values are not protected by a Mutex because they are normally // set only once during program startup. static const char* argv0 = "UNKNOWN"; // just the program name static const char* cmdline = ""; // the entire command-line static vector<string> argvs; static uint32 argv_sum = 0; static const char* program_usage = "Warning: SetUsageMessage() never called"; static bool program_usage_set = false; void SetArgv(int argc, const char** argv) { static bool called_set_argv = false; if (called_set_argv) // we already have an argv for you return; called_set_argv = true; assert(argc > 0); // every program has at least a progname argv0 = strdup(argv[0]); // small memory leak, but fn only called once assert(argv0); string cmdline_string = string(""); // easier than doing strcats argvs.clear(); for (int i = 0; i < argc; i++) { if (i != 0) cmdline_string += " "; cmdline_string += argv[i]; argvs.push_back(argv[i]); } cmdline = strdup(cmdline_string.c_str()); // another small memory leak assert(cmdline); // Compute a simple sum of all the chars in argv argv_sum = 0; for (const char* c = cmdline; *c; c++) argv_sum += *c; } const vector<string>& GetArgvs() { return argvs; } const char* GetArgv() { return cmdline; } const char* GetArgv0() { return argv0; } uint32 GetArgvSum() { return argv_sum; } const char* ProgramInvocationName() { // like the GNU libc fn return GetArgv0(); } const char* ProgramInvocationShortName() { // like the GNU libc fn const char* slash = strrchr(argv0, '/'); #ifdef OS_WINDOWS if (!slash) slash = strrchr(argv0, '\\'); #endif return slash ? slash + 1 : argv0; } void SetUsageMessage(const string& usage) { if (program_usage_set) { fprintf(stderr, "ERROR: SetUsageMessage() called more than once\n"); commandlineflags_exitfunc(1); // almost certainly exit() } program_usage = strdup(usage.c_str()); // small memory leak program_usage_set = true; } const char* ProgramUsage() { return program_usage; } // -------------------------------------------------------------------- // CommandLineFlagParser // Parsing is done in two stages. In the first, we go through // argv. For every flag-like arg we can make sense of, we parse // it and set the appropriate FLAGS_* variable. For every flag- // like arg we can't make sense of, we store it in a vector, // along with an explanation of the trouble. In stage 2, we // handle the 'reporting' flags like --help and --mpm_version. // (This is via a call to HandleCommandLineHelpFlags(), in // commandlineflags_reporting.cc.) // An optional stage 3 prints out the error messages. // This is a bit of a simplification. For instance, --flagfile // is handled as soon as it's seen in stage 1, not in stage 2. // -------------------------------------------------------------------- class CommandLineFlagParser { public: // The argument is the flag-registry to register the parsed flags in explicit CommandLineFlagParser(FlagRegistry* reg) : registry_(reg) {} ~CommandLineFlagParser() {} // Stage 1: Every time this is called, it reads all flags in argv. // However, it ignores all flags that have been successfully set // before. Typically this is only called once, so this 'reparsing' // behavior isn't important. It can be useful when trying to // reparse after loading a dll, though. uint32 ParseNewCommandLineFlags(int* argc, char*** argv, bool remove_flags); // Stage 2: print reporting info and exit, if requested. // In commandlineflags_reporting.cc:HandleCommandLineHelpFlags(). // Stage 3: report any errors and return true if any were found. bool ReportErrors(); // Set a particular command line option. "newval" is a string // describing the new value that the option has been set to. If // option_name does not specify a valid option name, or value is not // a valid value for option_name, newval is empty. Does recursive // processing for --flagfile and --fromenv. Returns the new value // if everything went ok, or empty-string if not. (Actually, the // return-string could hold many flag/value pairs due to --flagfile.) // NB: Must have called registry_->Lock() before calling this function. string ProcessSingleOptionLocked(CommandLineFlag* flag, const char* value, FlagSettingMode set_mode); // Set a whole batch of command line options as specified by contentdata, // which is in flagfile format (and probably has been read from a flagfile). // Returns the new value if everything went ok, or empty-string if // not. (Actually, the return-string could hold many flag/value // pairs due to --flagfile.) // NB: Must have called registry_->Lock() before calling this function. string ProcessOptionsFromStringLocked(const string& contentdata, FlagSettingMode set_mode); // These are the 'recursive' flags, defined at the top of this file. // Whenever we see these flags on the commandline, we must take action. // These are called by ProcessSingleOptionLocked and, similarly, return // new values if everything went ok, or the empty-string if not. string ProcessFlagfileLocked(const string& flagval, FlagSettingMode set_mode); string ProcessFromenvLocked(const string& flagval, FlagSettingMode set_mode, bool errors_are_fatal); // diff fromenv/tryfromenv private: FlagRegistry* const registry_; map<string, string> error_flags_; // map from name to error message // This could be a set<string>, but we reuse the map to minimize the .o size map<string, string> undefined_names_; // --name for name that's not registered }; // Parse a list of (comma-separated) flags. static void ParseFlagList(const char* value, vector<string>* flags) { for (const char *p = value; p && *p; value = p) { p = strchr(value, ','); int len; if (p) { len = p - value; p++; } else { len = strlen(value); } if (len == 0) { fprintf(stderr, "ERROR: empty flaglist entry\n"); commandlineflags_exitfunc(1); // almost certainly exit() } if (value[0] == '-') { fprintf(stderr, "ERROR: flag \"%*s\" begins with '-'\n", len, value); commandlineflags_exitfunc(1); } flags->push_back(string(value, len)); } } // Snarf an entire file into a C++ string. This is just so that we // can do all the I/O in one place and not worry about it everywhere. // Plus, it's convenient to have the whole file contents at hand. // Adds a newline at the end of the file. #define PFATAL(s) do { perror(s); commandlineflags_exitfunc(1); } while (0) static string ReadFileIntoString(const char* filename) { const int bufsize = 8092; char buffer[bufsize]; string s; FILE* fp = fopen(filename, "r"); if (!fp) PFATAL(filename); int n; while ( (n=fread(buffer, 1, bufsize, fp)) > 0 ) { if (ferror(fp)) PFATAL(filename); s.append(buffer, n); } fclose(fp); return s; } uint32 CommandLineFlagParser::ParseNewCommandLineFlags(int* argc, char*** argv, bool remove_flags) { const char *program_name = strrchr((*argv)[0], PATH_SEPARATOR); // nix path program_name = (program_name == NULL ? (*argv)[0] : program_name+1); int first_nonopt = *argc; // for non-options moved to the end registry_->Lock(); for (int i = 1; i < first_nonopt; i++) { char* arg = (*argv)[i]; // Like getopt(), we permute non-option flags to be at the end. if (arg[0] != '-') { // must be a program argument memmove((*argv) + i, (*argv) + i+1, (*argc - (i+1)) * sizeof((*argv)[i])); (*argv)[*argc-1] = arg; // we go last first_nonopt--; // we've been pushed onto the stack i--; // to undo the i++ in the loop continue; } if (arg[0] == '-') arg++; // allow leading '-' if (arg[0] == '-') arg++; // or leading '--' // - and -- alone mean what they do for GNU: stop options parsing if (*arg == '\0') { first_nonopt = i+1; break; } // Find the flag object for this option string key; const char* value; CommandLineFlag* flag = registry_->SplitArgumentLocked(arg, &key, &value); if (flag == NULL) { undefined_names_[key] = ""; // value isn't actually used error_flags_[key] = (string(kError) + "unknown command line flag '" + key + "'\n"); continue; } if (value == NULL) { // Boolean options are always assigned a value by SplitArgumentLocked() assert(strcmp(flag->type_name(), "bool") != 0); if (i+1 >= first_nonopt) { // This flag needs a value, but there is nothing available error_flags_[key] = (string(kError) + "flag '" + (*argv)[i] + "'" + + " is missing its argument\n"); break; // we treat this as an unrecoverable error } else { value = (*argv)[++i]; // read next arg for value } } // TODO(csilvers): only set a flag if we hadn't set it before here ProcessSingleOptionLocked(flag, value, SET_FLAGS_VALUE); } registry_->Unlock(); if (remove_flags) { // Fix up argc and argv by removing command line flags (*argv)[first_nonopt-1] = (*argv)[0]; (*argv) += (first_nonopt-1); (*argc) -= (first_nonopt-1); first_nonopt = 1; // because we still don't count argv[0] } logging_is_probably_set_up = true; // because we've parsed --logdir, etc. return first_nonopt; } string CommandLineFlagParser::ProcessFlagfileLocked(const string& flagval, FlagSettingMode set_mode) { if (flagval.empty()) return ""; string msg; vector<string> filename_list; ParseFlagList(flagval.c_str(), &filename_list); // take a list of filenames for (int i = 0; i < filename_list.size(); ++i) { const char* file = filename_list[i].c_str(); msg += ProcessOptionsFromStringLocked(ReadFileIntoString(file), set_mode); } return msg; } string CommandLineFlagParser::ProcessFromenvLocked(const string& flagval, FlagSettingMode set_mode, bool errors_are_fatal) { if (flagval.empty()) return ""; string msg; vector<string> flaglist; ParseFlagList(flagval.c_str(), &flaglist); for (int i = 0; i < flaglist.size(); ++i) { const char* flagname = flaglist[i].c_str(); CommandLineFlag* flag = registry_->FindFlagLocked(flagname); if (flag == NULL) { error_flags_[flagname] = (string(kError) + "unknown command line flag" + " '" + flagname + "'" + " (via --fromenv or --tryfromenv)\n"); undefined_names_[flagname] = ""; continue; } const string envname = string("FLAGS_") + string(flagname); const char* envval = getenv(envname.c_str()); if (!envval) { if (errors_are_fatal) { error_flags_[flagname] = (string(kError) + envname + " not found in environment\n"); } continue; } // Avoid infinite recursion. if ((strcmp(envval, "fromenv") == 0) || (strcmp(envval, "tryfromenv") == 0)) { error_flags_[flagname] = (string(kError) + "infinite recursion on " + "environment flag '" + envval + "'\n"); continue; } msg += ProcessSingleOptionLocked(flag, envval, set_mode); } return msg; } string CommandLineFlagParser::ProcessSingleOptionLocked( CommandLineFlag* flag, const char* value, FlagSettingMode set_mode) { string msg; if (value && !registry_->SetFlagLocked(flag, value, set_mode, &msg)) { error_flags_[flag->name()] = msg; return ""; } // The recursive flags, --flagfile and --fromenv and --tryfromenv, // must be dealt with as soon as they're seen. They will emit // messages of their own. if (strcmp(flag->name(), "flagfile") == 0) { msg += ProcessFlagfileLocked(FLAGS_flagfile, set_mode); } else if (strcmp(flag->name(), "fromenv") == 0) { // last arg indicates envval-not-found is fatal (unlike in --tryfromenv) msg += ProcessFromenvLocked(FLAGS_fromenv, set_mode, true); } else if (strcmp(flag->name(), "tryfromenv") == 0) { msg += ProcessFromenvLocked(FLAGS_tryfromenv, set_mode, false); } return msg; } bool CommandLineFlagParser::ReportErrors() { // error_flags_ indicates errors we saw while parsing. // But we ignore undefined-names if ok'ed by --undef_ok if (!FLAGS_undefok.empty()) { vector<string> flaglist; ParseFlagList(FLAGS_undefok.c_str(), &flaglist); for (int i = 0; i < flaglist.size(); ++i) if (undefined_names_.find(flaglist[i]) != undefined_names_.end()) { error_flags_[flaglist[i]] = ""; // clear the error message } } // Likewise, if they decided to allow reparsing, all undefined-names // are ok; we just silently ignore them now, and hope that a future // parse will pick them up somehow. if (allow_command_line_reparsing) { for (map<string,string>::const_iterator it = undefined_names_.begin(); it != undefined_names_.end(); ++it) error_flags_[it->first] = ""; // clear the error message } bool found_error = false; for (map<string,string>::const_iterator it = error_flags_.begin(); it != error_flags_.end(); ++it) { if (!it->second.empty()) { fprintf(stderr, "%s", it->second.c_str()); found_error = true; } } return found_error; } string CommandLineFlagParser::ProcessOptionsFromStringLocked( const string& contentdata, FlagSettingMode set_mode) { string retval; const char* flagfile_contents = contentdata.c_str(); bool flags_are_relevant = true; // set to false when filenames don't match bool in_filename_section = false; const char* line_end = flagfile_contents; // We read this file a line at a time. for (; line_end; flagfile_contents = line_end + 1) { while (*flagfile_contents && isspace(*flagfile_contents)) ++flagfile_contents; line_end = strchr(flagfile_contents, '\n'); int len = line_end ? line_end-flagfile_contents : strlen(flagfile_contents); string line(flagfile_contents, len); // Each line can be one of four things: // 1) A comment line -- we skip it // 2) An empty line -- we skip it // 3) A list of filenames -- starts a new filenames+flags section // 4) A --flag=value line -- apply if previous filenames match if (line.empty() || line[0] == '#') { // comment or empty line; just ignore } else if (line[0] == '-') { // flag in_filename_section = false; // instead, it was a flag-line if (!flags_are_relevant) // skip this flag; applies to someone else continue; const char* name_and_val = line.c_str() + 1; // skip the leading - if (*name_and_val == '-') name_and_val++; // skip second - too string key; const char* value; CommandLineFlag* flag = registry_->SplitArgumentLocked(name_and_val, &key, &value); // By API, errors parsing flagfile lines are silently ignored. if (flag == NULL) { // "WARNING: flagname '" + key + "' not found\n" } else if (value == NULL) { // "WARNING: flagname '" + key + "' missing a value\n" } else { retval += ProcessSingleOptionLocked(flag, value, set_mode); } } else { // a filename! if (!in_filename_section) { // start over: assume filenames don't match in_filename_section = true; flags_are_relevant = false; } // Split the line up at spaces into glob-patterns const char* space = line.c_str(); // just has to be non-NULL for (const char* word = line.c_str(); *space; word = space+1) { if (flags_are_relevant) // we can stop as soon as we match break; space = strchr(word, ' '); if (space == NULL) space = word + strlen(word); const string glob(word, space - word); // We try matching both against the full argv0 and basename(argv0) if (fnmatch(glob.c_str(), ProgramInvocationName(), FNM_PATHNAME) == 0 || fnmatch(glob.c_str(), ProgramInvocationShortName(), FNM_PATHNAME) == 0) { flags_are_relevant = true; } } } } return retval; } // -------------------------------------------------------------------- // GetCommandLineOption() // GetCommandLineFlagInfo() // GetCommandLineFlagInfoOrDie() // SetCommandLineOption() // SetCommandLineOptionWithMode() // The programmatic way to set a flag's value, using a string // for its name rather than the variable itself (that is, // SetCommandLineOption("foo", x) rather than FLAGS_foo = x). // There's also a bit more flexibility here due to the various // set-modes, but typically these are used when you only have // that flag's name as a string, perhaps at runtime. // All of these work on the default, global registry. // For GetCommandLineOption, return false if no such flag // is known, true otherwise. We clear "value" if a suitable // flag is found. // -------------------------------------------------------------------- bool GetCommandLineOption(const char* name, string* value) { if (NULL == name) return false; assert(value); FlagRegistry* const registry = FlagRegistry::GlobalRegistry(); registry->Lock(); CommandLineFlag* flag = registry->FindFlagLocked(name); if (flag == NULL) { registry->Unlock(); return false; } else { *value = flag->current_value(); registry->Unlock(); return true; } } bool GetCommandLineFlagInfo(const char* name, CommandLineFlagInfo* OUTPUT) { if (NULL == name) return false; FlagRegistry* const registry = FlagRegistry::GlobalRegistry(); registry->Lock(); CommandLineFlag* flag = registry->FindFlagLocked(name); if (flag == NULL) { registry->Unlock(); return false; } else { assert(OUTPUT); flag->FillCommandLineFlagInfo(OUTPUT); registry->Unlock(); return true; } } CommandLineFlagInfo GetCommandLineFlagInfoOrDie(const char* name) { CommandLineFlagInfo info; if (!GetCommandLineFlagInfo(name, &info)) { fprintf(stderr, "FATAL ERROR: flag name '%s' doesn't exit", name); commandlineflags_exitfunc(1); // almost certainly exit() } return info; } string SetCommandLineOptionWithMode(const char* name, const char* value, FlagSettingMode set_mode) { string result; FlagRegistry* const registry = FlagRegistry::GlobalRegistry(); registry->Lock(); CommandLineFlag* flag = registry->FindFlagLocked(name); if (flag) { CommandLineFlagParser parser(registry); result = parser.ProcessSingleOptionLocked(flag, value, set_mode); if (!result.empty()) { // in the error case, we've already logged // You could consider logging this change, if you wanted to know it: //fprintf(stderr, "%sFLAGS_%s\n", // (set_mode == SET_FLAGS_DEFAULT ? "default value of " : ""), // result); } } registry->Unlock(); // The API of this function is that we return empty string on error return result; } string SetCommandLineOption(const char* name, const char* value) { return SetCommandLineOptionWithMode(name, value, SET_FLAGS_VALUE); } // -------------------------------------------------------------------- // FlagSaver // FlagSaverImpl // This class stores the states of all flags at construct time, // and restores all flags to that state at destruct time. // Its major implementation challenge is that it never modifies // pointers in the 'main' registry, so global FLAG_* vars always // point to the right place. // -------------------------------------------------------------------- class FlagSaverImpl { public: // Constructs an empty FlagSaverImpl object. explicit FlagSaverImpl(FlagRegistry* main_registry) : main_registry_(main_registry) { } ~FlagSaverImpl() { // reclaim memory from each of our CommandLineFlags vector<CommandLineFlag*>::const_iterator it; for (it = backup_registry_.begin(); it != backup_registry_.end(); ++it) delete *it; } // Saves the flag states from the flag registry into this object. // It's an error to call this more than once. // Must be called when the registry mutex is not held. void SaveFromRegistry() { main_registry_->Lock(); assert(backup_registry_.empty()); // call only once! for (FlagRegistry::FlagConstIterator it = main_registry_->flags_.begin(); it != main_registry_->flags_.end(); ++it) { const CommandLineFlag* main = it->second; // Sets up all the const variables in backup correctly CommandLineFlag* backup = new CommandLineFlag( main->name(), main->help(), main->filename(), main->current_->New(), main->defvalue_->New()); // Sets up all the non-const variables in backup correctly backup->CopyFrom(*main); backup_registry_.push_back(backup); // add it to a convenient list } main_registry_->Unlock(); } // Restores the saved flag states into the flag registry. We // assume no flags were added or deleted from the registry since // the SaveFromRegistry; if they were, that's trouble! Must be // called when the registry mutex is not held. void RestoreToRegistry() { main_registry_->Lock(); vector<CommandLineFlag*>::const_iterator it; for (it = backup_registry_.begin(); it != backup_registry_.end(); ++it) { CommandLineFlag* main = main_registry_->FindFlagLocked((*it)->name()); if (main != NULL) { // if NULL, flag got deleted from registry(!) main->CopyFrom(**it); } } main_registry_->Unlock(); } private: FlagRegistry* const main_registry_; vector<CommandLineFlag*> backup_registry_; FlagSaverImpl(const FlagSaverImpl&); // no copying! void operator=(const FlagSaverImpl&); }; FlagSaver::FlagSaver() : impl_(new FlagSaverImpl(FlagRegistry::GlobalRegistry())) { impl_->SaveFromRegistry(); } FlagSaver::~FlagSaver() { impl_->RestoreToRegistry(); delete impl_; } // -------------------------------------------------------------------- // CommandlineFlagsIntoString() // ReadFlagsFromString() // AppendFlagsIntoFile() // ReadFromFlagsFile() // These are mostly-deprecated routines that stick the // commandline flags into a file/string and read them back // out again. I can see a use for CommandlineFlagsIntoString, // for creating a flagfile, but the rest don't seem that useful // -- some, I think, are a poor-man's attempt at FlagSaver -- // and are included only until we can delete them from callers. // Note they don't save --flagfile flags (though they do save // the result of having called the flagfile, of course). // -------------------------------------------------------------------- static string TheseCommandlineFlagsIntoString( const vector<CommandLineFlagInfo>& flags) { vector<CommandLineFlagInfo>::const_iterator i; int retval_space = 0; for (i = flags.begin(); i != flags.end(); ++i) { // An (over)estimate of how much space it will take to print this flag retval_space += i->name.length() + i->current_value.length() + 5; } string retval; retval.reserve(retval_space); for (i = flags.begin(); i != flags.end(); ++i) { retval += "--"; retval += i->name; retval += "="; retval += i->current_value; retval += "\n"; } return retval; } string CommandlineFlagsIntoString() { vector<CommandLineFlagInfo> sorted_flags; GetAllFlags(&sorted_flags); return TheseCommandlineFlagsIntoString(sorted_flags); } bool ReadFlagsFromString(const string& flagfilecontents, const char* prog_name, // TODO(csilvers): nix this bool errors_are_fatal) { FlagRegistry* const registry = FlagRegistry::GlobalRegistry(); FlagSaverImpl saved_states(registry); saved_states.SaveFromRegistry(); CommandLineFlagParser parser(registry); registry->Lock(); parser.ProcessOptionsFromStringLocked(flagfilecontents, SET_FLAGS_VALUE); registry->Unlock(); // Should we handle --help and such when reading flags from a string? Sure. HandleCommandLineHelpFlags(); if (parser.ReportErrors()) { // Error. Restore all global flags to their previous values. if (errors_are_fatal) commandlineflags_exitfunc(1); // almost certainly exit() saved_states.RestoreToRegistry(); return false; } return true; } // TODO(csilvers): nix prog_name in favor of ProgramInvocationShortName() bool AppendFlagsIntoFile(const string& filename, const char *prog_name) { FILE *fp = fopen(filename.c_str(), "a"); if (!fp) { return false; } if (prog_name) fprintf(fp, "%s\n", prog_name); vector<CommandLineFlagInfo> flags; GetAllFlags(&flags); // But we don't want --flagfile, which leads to weird recursion issues vector<CommandLineFlagInfo>::iterator i; for (i = flags.begin(); i != flags.end(); ++i) { if (strcmp(i->name.c_str(), "flagfile") == 0) { flags.erase(i); break; } } fprintf(fp, "%s", TheseCommandlineFlagsIntoString(flags).c_str()); fclose(fp); return true; } bool ReadFromFlagsFile(const string& filename, const char* prog_name, bool errors_are_fatal) { return ReadFlagsFromString(ReadFileIntoString(filename.c_str()), prog_name, errors_are_fatal); } // -------------------------------------------------------------------- // BoolFromEnv() // Int32FromEnv() // Int64FromEnv() // Uint64FromEnv() // DoubleFromEnv() // StringFromEnv() // Reads the value from the environment and returns it. // We use an FlagValue to make the parsing easy. // Example usage: // DEFINE_bool(myflag, BoolFromEnv("MYFLAG_DEFAULT", false), "whatever"); // -------------------------------------------------------------------- template<typename T> T GetFromEnv(const char *varname, const char* type, T dflt) { const char* const valstr = getenv(varname); if (!valstr) return dflt; FlagValue ifv(new T, type); if (!ifv.ParseFrom(valstr)) { fprintf(stderr, "ERROR: error parsing env variable '%s' with value '%s'\n", varname, valstr); commandlineflags_exitfunc(1); // almost certainly exit() } return OTHER_VALUE_AS(ifv, T); } bool BoolFromEnv(const char *v, bool dflt) { return GetFromEnv(v, "bool", dflt); } int32 Int32FromEnv(const char *v, int32 dflt) { return GetFromEnv(v, "int32", dflt); } int64 Int64FromEnv(const char *v, int64 dflt) { return GetFromEnv(v, "int64", dflt); } uint64 Uint64FromEnv(const char *v, uint64 dflt) { return GetFromEnv(v, "uint64", dflt); } double DoubleFromEnv(const char *v, double dflt) { return GetFromEnv(v, "double", dflt); } const char *StringFromEnv(const char *varname, const char *dflt) { const char* const val = getenv(varname); return val ? val : dflt; } // -------------------------------------------------------------------- // ParseCommandLineFlags() // ParseCommandLineNonHelpFlags() // HandleCommandLineHelpFlags() // This is the main function called from main(), to actually // parse the commandline. It modifies argc and argv as described // at the top of commandlineflags.h. You can also divide this // function into two parts, if you want to do work between // the parsing of the flags and the printing of any help output. // -------------------------------------------------------------------- static uint32 ParseCommandLineFlagsInternal(int* argc, char*** argv, bool remove_flags, bool do_report) { SetArgv(*argc, const_cast<const char**>(*argv)); // save it for later FlagRegistry* const registry = FlagRegistry::GlobalRegistry(); CommandLineFlagParser parser(registry); // When we parse the commandline flags, we'll handle --flagfile, // --tryfromenv, etc. as we see them (since flag-evaluation order // may be important). But sometimes apps set FLAGS_tryfromenv/etc. // manually before calling ParseCommandLineFlags. We want to evaluate // those too, as if they were the first flags on the commandline. registry->Lock(); parser.ProcessFlagfileLocked(FLAGS_flagfile, SET_FLAGS_VALUE); // Last arg here indicates whether flag-not-found is a fatal error or not parser.ProcessFromenvLocked(FLAGS_fromenv, SET_FLAGS_VALUE, true); parser.ProcessFromenvLocked(FLAGS_tryfromenv, SET_FLAGS_VALUE, false); registry->Unlock(); // Now get the flags specified on the commandline const int r = parser.ParseNewCommandLineFlags(argc, argv, remove_flags); if (do_report) HandleCommandLineHelpFlags(); // may cause us to exit on --help, etc. if (parser.ReportErrors()) // may cause us to exit on illegal flags commandlineflags_exitfunc(1); // almost certainly exit() return r; } uint32 ParseCommandLineFlags(int* argc, char*** argv, bool remove_flags) { return ParseCommandLineFlagsInternal(argc, argv, remove_flags, true); } uint32 ParseCommandLineNonHelpFlags(int* argc, char*** argv, bool remove_flags) { return ParseCommandLineFlagsInternal(argc, argv, remove_flags, false); } // -------------------------------------------------------------------- // AllowCommandLineReparsing() // ReparseCommandLineNonHelpFlags() // This is most useful for shared libraries. The idea is if // a flag is defined in a shared library that is dlopen'ed // sometime after main(), you can ParseCommandLineFlags before // the dlopen, then ReparseCommandLineNonHelpFlags() after the // dlopen, to get the new flags. But you have to explicitly // Allow() it; otherwise, you get the normal default behavior // of unrecognized flags calling a fatal error. // TODO(csilvers): this isn't used. Just delete it? // -------------------------------------------------------------------- void AllowCommandLineReparsing() { allow_command_line_reparsing = true; } uint32 ReparseCommandLineNonHelpFlags() { // We make a copy of argc and argv to pass in const vector<string>& argvs = GetArgvs(); int tmp_argc = argvs.size(); char** tmp_argv = new char* [tmp_argc + 1]; for (int i = 0; i < tmp_argc; ++i) tmp_argv[i] = strdup(argvs[i].c_str()); // TODO(csilvers): don't dup const int retval = ParseCommandLineNonHelpFlags(&tmp_argc, &tmp_argv, false); for (int i = 0; i < tmp_argc; ++i) free(tmp_argv[i]); delete[] tmp_argv; return retval; } _END_GOOGLE_NAMESPACE_