Newer
Older
/*
* Copyright 2014 Google Inc. All rights reserved.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <algorithm>
#include "flatbuffers/flatbuffers.h"
#include "flatbuffers/idl.h"
#include "flatbuffers/util.h"
namespace flatbuffers {
const char *const kTypeNames[] = {
#define FLATBUFFERS_TD(ENUM, IDLTYPE, CTYPE, JTYPE, GTYPE) IDLTYPE,
FLATBUFFERS_GEN_TYPES(FLATBUFFERS_TD)
#undef FLATBUFFERS_TD
nullptr
};
const char kTypeSizes[] = {
#define FLATBUFFERS_TD(ENUM, IDLTYPE, CTYPE, JTYPE, GTYPE) sizeof(CTYPE),
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
FLATBUFFERS_GEN_TYPES(FLATBUFFERS_TD)
#undef FLATBUFFERS_TD
};
static void Error(const std::string &msg) {
throw msg;
}
// Ensure that integer values we parse fit inside the declared integer type.
static void CheckBitsFit(int64_t val, size_t bits) {
auto mask = (1ll << bits) - 1; // Bits we allow to be used.
if (bits < 64 &&
(val & ~mask) != 0 && // Positive or unsigned.
(val | mask) != -1) // Negative.
Error("constant does not fit in a " + NumToString(bits) + "-bit field");
}
// atot: templated version of atoi/atof: convert a string to an instance of T.
template<typename T> inline T atot(const char *s) {
auto val = StringToInt(s);
CheckBitsFit(val, sizeof(T) * 8);
return (T)val;
}
template<> inline bool atot<bool>(const char *s) {
return 0 != atoi(s);
}
template<> inline float atot<float>(const char *s) {
return static_cast<float>(strtod(s, nullptr));
}
template<> inline double atot<double>(const char *s) {
return strtod(s, nullptr);
}
template<> inline Offset<void> atot<Offset<void>>(const char *s) {
return Offset<void>(atoi(s));
}
// Declare tokens we'll use. Single character tokens are represented by their
// ascii character code (e.g. '{'), others above 256.
#define FLATBUFFERS_GEN_TOKENS(TD) \
TD(Eof, 256, "end of file") \
TD(StringConstant, 257, "string constant") \
TD(IntegerConstant, 258, "integer constant") \
TD(FloatConstant, 259, "float constant") \
TD(Identifier, 260, "identifier") \
TD(Table, 261, "table") \
TD(Struct, 262, "struct") \
TD(Enum, 263, "enum") \
TD(Union, 264, "union") \
TD(NameSpace, 265, "namespace") \
TD(RootType, 266, "root_type") \
TD(FileIdentifier, 267, "file_identifier") \
TD(FileExtension, 268, "file_extension") \
TD(Include, 269, "include")
#ifdef __GNUC__
__extension__ // Stop GCC complaining about trailing comma with -Wpendantic.
#endif
#define FLATBUFFERS_TOKEN(NAME, VALUE, STRING) kToken ## NAME = VALUE,
FLATBUFFERS_GEN_TOKENS(FLATBUFFERS_TOKEN)
#undef FLATBUFFERS_TOKEN
#define FLATBUFFERS_TD(ENUM, IDLTYPE, CTYPE, JTYPE, GTYPE) kToken ## ENUM,
FLATBUFFERS_GEN_TYPES(FLATBUFFERS_TD)
#undef FLATBUFFERS_TD
};
static std::string TokenToString(int t) {
static const char *tokens[] = {
#define FLATBUFFERS_TOKEN(NAME, VALUE, STRING) STRING,
FLATBUFFERS_GEN_TOKENS(FLATBUFFERS_TOKEN)
#undef FLATBUFFERS_TOKEN
#define FLATBUFFERS_TD(ENUM, IDLTYPE, CTYPE, JTYPE, GTYPE) IDLTYPE,
FLATBUFFERS_GEN_TYPES(FLATBUFFERS_TD)
#undef FLATBUFFERS_TD
};
if (t < 256) { // A single ascii char token.
std::string s;
s.append(1, t);
return s;
} else { // Other tokens.
return tokens[t - 256];
}
}
Wouter van Oortmerssen
committed
// Parses exactly nibbles worth of hex digits into a number, or error.
int64_t Parser::ParseHexNum(int nibbles) {
for (int i = 0; i < nibbles; i++)
if (!isxdigit(cursor_[i]))
Error("escape code must be followed by " + NumToString(nibbles) +
" hex digits");
auto val = StringToInt(cursor_, 16);
cursor_ += nibbles;
return val;
}
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
void Parser::Next() {
doc_comment_.clear();
bool seen_newline = false;
for (;;) {
char c = *cursor_++;
token_ = c;
switch (c) {
case '\0': cursor_--; token_ = kTokenEof; return;
case ' ': case '\r': case '\t': break;
case '\n': line_++; seen_newline = true; break;
case '{': case '}': case '(': case ')': case '[': case ']': return;
case ',': case ':': case ';': case '=': return;
case '.':
if(!isdigit(*cursor_)) return;
Error("floating point constant can\'t start with \".\"");
break;
case '\"':
attribute_ = "";
while (*cursor_ != '\"') {
if (*cursor_ < ' ' && *cursor_ >= 0)
Error("illegal character in string constant");
if (*cursor_ == '\\') {
cursor_++;
switch (*cursor_) {
case 'n': attribute_ += '\n'; cursor_++; break;
case 't': attribute_ += '\t'; cursor_++; break;
case 'r': attribute_ += '\r'; cursor_++; break;
Wouter van Oortmerssen
committed
case 'b': attribute_ += '\b'; cursor_++; break;
case 'f': attribute_ += '\f'; cursor_++; break;
case '\"': attribute_ += '\"'; cursor_++; break;
case '\\': attribute_ += '\\'; cursor_++; break;
Wouter van Oortmerssen
committed
case '/': attribute_ += '/'; cursor_++; break;
case 'x': { // Not in the JSON standard
cursor_++;
attribute_ += static_cast<char>(ParseHexNum(2));
break;
}
case 'u': {
cursor_++;
ToUTF8(static_cast<int>(ParseHexNum(4)), &attribute_);
break;
}
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
default: Error("unknown escape code in string constant"); break;
}
} else { // printable chars + UTF-8 bytes
attribute_ += *cursor_++;
}
}
cursor_++;
token_ = kTokenStringConstant;
return;
case '/':
if (*cursor_ == '/') {
const char *start = ++cursor_;
while (*cursor_ && *cursor_ != '\n') cursor_++;
if (*start == '/') { // documentation comment
if (!seen_newline)
Error("a documentation comment should be on a line on its own");
// todo: do we want to support multiline comments instead?
doc_comment_ += std::string(start + 1, cursor_);
}
break;
}
// fall thru
default:
if (isalpha(static_cast<unsigned char>(c))) {
// Collect all chars of an identifier:
const char *start = cursor_ - 1;
while (isalnum(static_cast<unsigned char>(*cursor_)) ||
*cursor_ == '_')
cursor_++;
attribute_.clear();
attribute_.append(start, cursor_);
// First, see if it is a type keyword from the table of types:
#define FLATBUFFERS_TD(ENUM, IDLTYPE, CTYPE, JTYPE, GTYPE) \
if (attribute_ == IDLTYPE) { \
token_ = kToken ## ENUM; \
return; \
}
FLATBUFFERS_GEN_TYPES(FLATBUFFERS_TD)
#undef FLATBUFFERS_TD
// If it's a boolean constant keyword, turn those into integers,
// which simplifies our logic downstream.
if (attribute_ == "true" || attribute_ == "false") {
attribute_ = NumToString(attribute_ == "true");
token_ = kTokenIntegerConstant;
return;
}
// Check for declaration keywords:
if (attribute_ == "table") { token_ = kTokenTable; return; }
if (attribute_ == "struct") { token_ = kTokenStruct; return; }
if (attribute_ == "enum") { token_ = kTokenEnum; return; }
if (attribute_ == "union") { token_ = kTokenUnion; return; }
if (attribute_ == "namespace") { token_ = kTokenNameSpace; return; }
if (attribute_ == "root_type") { token_ = kTokenRootType; return; }
if (attribute_ == "include") { token_ = kTokenInclude; return; }
if (attribute_ == "file_identifier") {
token_ = kTokenFileIdentifier;
return;
}
if (attribute_ == "file_extension") {
token_ = kTokenFileExtension;
return;
}
// If not, it is a user-defined identifier:
token_ = kTokenIdentifier;
return;
} else if (isdigit(static_cast<unsigned char>(c)) || c == '-') {
const char *start = cursor_ - 1;
while (isdigit(static_cast<unsigned char>(*cursor_))) cursor_++;
if (*cursor_ == '.') {
cursor_++;
while (isdigit(static_cast<unsigned char>(*cursor_))) cursor_++;
// See if this float has a scientific notation suffix. Both JSON
// and C++ (through strtod() we use) have the same format:
if (*cursor_ == 'e' || *cursor_ == 'E') {
cursor_++;
if (*cursor_ == '+' || *cursor_ == '-') cursor_++;
while (isdigit(static_cast<unsigned char>(*cursor_))) cursor_++;
}
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
token_ = kTokenFloatConstant;
} else {
token_ = kTokenIntegerConstant;
}
attribute_.clear();
attribute_.append(start, cursor_);
return;
}
std::string ch;
ch = c;
if (c < ' ' || c > '~') ch = "code: " + NumToString(c);
Error("illegal character: " + ch);
break;
}
}
}
// Check if a given token is next, if so, consume it as well.
bool Parser::IsNext(int t) {
bool isnext = t == token_;
if (isnext) Next();
return isnext;
}
// Expect a given token to be next, consume it, or error if not present.
void Parser::Expect(int t) {
if (t != token_) {
Error("expecting: " + TokenToString(t) + " instead got: " +
TokenToString(token_));
}
Next();
}
// Parse any IDL type.
void Parser::ParseType(Type &type) {
if (token_ >= kTokenBOOL && token_ <= kTokenSTRING) {
type.base_type = static_cast<BaseType>(token_ - kTokenNONE);
} else {
if (token_ == kTokenIdentifier) {
auto enum_def = enums_.Lookup(attribute_);
if (enum_def) {
type = enum_def->underlying_type;
if (enum_def->is_union) type.base_type = BASE_TYPE_UNION;
} else {
type.base_type = BASE_TYPE_STRUCT;
type.struct_def = LookupCreateStruct(attribute_);
}
} else if (token_ == '[') {
Next();
Type subtype;
ParseType(subtype);
if (subtype.base_type == BASE_TYPE_VECTOR) {
// We could support this, but it will complicate things, and it's
// easier to work around with a struct around the inner vector.
Error("nested vector types not supported (wrap in table first).");
}
if (subtype.base_type == BASE_TYPE_UNION) {
// We could support this if we stored a struct of 2 elements per
// union element.
Error("vector of union types not supported (wrap in table first).");
}
type = Type(BASE_TYPE_VECTOR, subtype.struct_def, subtype.enum_def);
type.element = subtype.base_type;
Expect(']');
return;
} else {
Error("illegal type syntax");
}
}
Next();
}
FieldDef &Parser::AddField(StructDef &struct_def,
const std::string &name,
const Type &type) {
auto &field = *new FieldDef();
field.value.offset =
FieldIndexToOffset(static_cast<voffset_t>(struct_def.fields.vec.size()));
field.name = name;
field.value.type = type;
if (struct_def.fixed) { // statically compute the field offset
auto size = InlineSize(type);
auto alignment = InlineAlignment(type);
// structs_ need to have a predictable format, so we need to align to
// the largest scalar
struct_def.minalign = std::max(struct_def.minalign, alignment);
struct_def.PadLastField(alignment);
field.value.offset = static_cast<voffset_t>(struct_def.bytesize);
struct_def.bytesize += size;
}
if (struct_def.fields.Add(name, &field))
Error("field already exists: " + name);
return field;
}
void Parser::ParseField(StructDef &struct_def) {
std::string name = attribute_;
std::string dc = doc_comment_;
Expect(kTokenIdentifier);
Expect(':');
Type type;
ParseType(type);
if (struct_def.fixed && !IsScalar(type.base_type) && !IsStruct(type))
Error("structs_ may contain only scalar or struct fields");
FieldDef *typefield = nullptr;
if (type.base_type == BASE_TYPE_UNION) {
// For union fields, add a second auto-generated field to hold the type,
// with _type appended as the name.
typefield = &AddField(struct_def, name + "_type",
type.enum_def->underlying_type);
}
auto &field = AddField(struct_def, name, type);
if (token_ == '=') {
Next();
ParseSingleValue(field.value);
}
field.doc_comment = dc;
ParseMetaData(field);
field.deprecated = field.attributes.Lookup("deprecated") != nullptr;
if (field.deprecated && struct_def.fixed)
Error("can't deprecate fields in a struct");
auto nested = field.attributes.Lookup("nested_flatbuffer");
if (nested) {
if (nested->type.base_type != BASE_TYPE_STRING)
Error("nested_flatbuffer attribute must be a string (the root type)");
if (field.value.type.base_type != BASE_TYPE_VECTOR ||
field.value.type.element != BASE_TYPE_UCHAR)
Error("nested_flatbuffer attribute may only apply to a vector of ubyte");
// This will cause an error if the root type of the nested flatbuffer
// wasn't defined elsewhere.
LookupCreateStruct(nested->constant);
}
if (typefield) {
// If this field is a union, and it has a manually assigned id,
// the automatically added type field should have an id as well (of N - 1).
auto attr = field.attributes.Lookup("id");
if (attr) {
auto id = atoi(attr->constant.c_str());
auto val = new Value();
val->type = attr->type;
val->constant = NumToString(id - 1);
typefield->attributes.Add("id", val);
}
}
Expect(';');
}
void Parser::ParseAnyValue(Value &val, FieldDef *field) {
switch (val.type.base_type) {
case BASE_TYPE_UNION: {
assert(field);
if (!field_stack_.size() ||
field_stack_.back().second->value.type.base_type != BASE_TYPE_UTYPE)
Error("missing type field before this union value: " + field->name);
auto enum_idx = atot<unsigned char>(
field_stack_.back().first.constant.c_str());
auto enum_val = val.type.enum_def->ReverseLookup(enum_idx);
if (!enum_val) Error("illegal type id for: " + field->name);
val.constant = NumToString(ParseTable(*enum_val->struct_def));
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
break;
}
case BASE_TYPE_STRUCT:
val.constant = NumToString(ParseTable(*val.type.struct_def));
break;
case BASE_TYPE_STRING: {
auto s = attribute_;
Expect(kTokenStringConstant);
val.constant = NumToString(builder_.CreateString(s).o);
break;
}
case BASE_TYPE_VECTOR: {
Expect('[');
val.constant = NumToString(ParseVector(val.type.VectorType()));
break;
}
default:
ParseSingleValue(val);
break;
}
}
void Parser::SerializeStruct(const StructDef &struct_def, const Value &val) {
auto off = atot<uoffset_t>(val.constant.c_str());
assert(struct_stack_.size() - off == struct_def.bytesize);
builder_.Align(struct_def.minalign);
builder_.PushBytes(&struct_stack_[off], struct_def.bytesize);
struct_stack_.resize(struct_stack_.size() - struct_def.bytesize);
builder_.AddStructOffset(val.offset, builder_.GetSize());
}
uoffset_t Parser::ParseTable(const StructDef &struct_def) {
Expect('{');
size_t fieldn = 0;
if (!IsNext('}')) for (;;) {
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
std::string name = attribute_;
if (!IsNext(kTokenStringConstant)) Expect(kTokenIdentifier);
auto field = struct_def.fields.Lookup(name);
if (!field) Error("unknown field: " + name);
if (struct_def.fixed && (fieldn >= struct_def.fields.vec.size()
|| struct_def.fields.vec[fieldn] != field)) {
Error("struct field appearing out of order: " + name);
}
Expect(':');
Value val = field->value;
ParseAnyValue(val, field);
field_stack_.push_back(std::make_pair(val, field));
fieldn++;
if (IsNext('}')) break;
Expect(',');
}
if (struct_def.fixed && fieldn != struct_def.fields.vec.size())
Error("incomplete struct initialization: " + struct_def.name);
auto start = struct_def.fixed
? builder_.StartStruct(struct_def.minalign)
: builder_.StartTable();
for (size_t size = struct_def.sortbysize ? sizeof(largest_scalar_t) : 1;
size;
size /= 2) {
// Go through elements in reverse, since we're building the data backwards.
for (auto it = field_stack_.rbegin();
it != field_stack_.rbegin() + fieldn; ++it) {
auto &value = it->first;
auto field = it->second;
if (!struct_def.sortbysize || size == SizeOf(value.type.base_type)) {
switch (value.type.base_type) {
#define FLATBUFFERS_TD(ENUM, IDLTYPE, CTYPE, JTYPE, GTYPE) \
case BASE_TYPE_ ## ENUM: \
builder_.Pad(field->padding); \
Wouter van Oortmerssen
committed
if (struct_def.fixed) { \
builder_.PushElement(atot<CTYPE>(value.constant.c_str())); \
} else { \
builder_.AddElement(value.offset, \
atot<CTYPE>( value.constant.c_str()), \
atot<CTYPE>(field->value.constant.c_str())); \
Wouter van Oortmerssen
committed
} \
break;
FLATBUFFERS_GEN_TYPES_SCALAR(FLATBUFFERS_TD);
#undef FLATBUFFERS_TD
#define FLATBUFFERS_TD(ENUM, IDLTYPE, CTYPE, JTYPE, GTYPE) \
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
case BASE_TYPE_ ## ENUM: \
builder_.Pad(field->padding); \
if (IsStruct(field->value.type)) { \
SerializeStruct(*field->value.type.struct_def, value); \
} else { \
builder_.AddOffset(value.offset, \
atot<CTYPE>(value.constant.c_str())); \
} \
break;
FLATBUFFERS_GEN_TYPES_POINTER(FLATBUFFERS_TD);
#undef FLATBUFFERS_TD
}
}
}
}
for (size_t i = 0; i < fieldn; i++) field_stack_.pop_back();
if (struct_def.fixed) {
builder_.ClearOffsets();
builder_.EndStruct();
// Temporarily store this struct in a side buffer, since this data has to
// be stored in-line later in the parent object.
auto off = struct_stack_.size();
struct_stack_.insert(struct_stack_.end(),
builder_.GetBufferPointer(),
builder_.GetBufferPointer() + struct_def.bytesize);
builder_.PopBytes(struct_def.bytesize);
return static_cast<uoffset_t>(off);
} else {
return builder_.EndTable(
start,
static_cast<voffset_t>(struct_def.fields.vec.size()));
}
}
uoffset_t Parser::ParseVector(const Type &type) {
int count = 0;
if (token_ != ']') for (;;) {
Value val;
val.type = type;
ParseAnyValue(val, NULL);
field_stack_.push_back(std::make_pair(val, nullptr));
count++;
if (token_ == ']') break;
Expect(',');
}
Next();
Wouter van Oortmerssen
committed
builder_.StartVector(count * InlineSize(type) / InlineAlignment(type),
InlineAlignment(type));
for (int i = 0; i < count; i++) {
// start at the back, since we're building the data backwards.
auto &val = field_stack_.back().first;
switch (val.type.base_type) {
#define FLATBUFFERS_TD(ENUM, IDLTYPE, CTYPE, JTYPE, GTYPE) \
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
case BASE_TYPE_ ## ENUM: \
if (IsStruct(val.type)) SerializeStruct(*val.type.struct_def, val); \
else builder_.PushElement(atot<CTYPE>(val.constant.c_str())); \
break;
FLATBUFFERS_GEN_TYPES(FLATBUFFERS_TD)
#undef FLATBUFFERS_TD
}
field_stack_.pop_back();
}
builder_.ClearOffsets();
return builder_.EndVector(count);
}
void Parser::ParseMetaData(Definition &def) {
if (IsNext('(')) {
for (;;) {
auto name = attribute_;
Expect(kTokenIdentifier);
auto e = new Value();
def.attributes.Add(name, e);
if (IsNext(':')) {
ParseSingleValue(*e);
}
if (IsNext(')')) break;
Expect(',');
}
}
}
bool Parser::TryTypedValue(int dtoken,
bool check,
Value &e,
BaseType req) {
bool match = dtoken == token_;
if (match) {
e.constant = attribute_;
if (!check) {
if (e.type.base_type == BASE_TYPE_NONE) {
e.type.base_type = req;
} else {
Error(std::string("type mismatch: expecting: ") +
kTypeNames[e.type.base_type] +
", found: " +
kTypeNames[req]);
}
}
Next();
}
return match;
}
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
int64_t Parser::ParseIntegerFromString(Type &type) {
int64_t result = 0;
// Parse one or more enum identifiers, separated by spaces.
const char *next = attribute_.c_str();
do {
const char *divider = strchr(next, ' ');
std::string word;
if (divider) {
word = std::string(next, divider);
next = divider + strspn(divider, " ");
} else {
word = next;
next += word.length();
}
if (type.enum_def) { // The field has an enum type
auto enum_val = type.enum_def->vals.Lookup(word);
if (!enum_val)
Error("unknown enum value: " + word +
", for enum: " + type.enum_def->name);
result |= enum_val->value;
} else { // No enum type, probably integral field.
if (!IsInteger(type.base_type))
Error("not a valid value for this field: " + word);
// TODO: could check if its a valid number constant here.
const char *dot = strchr(word.c_str(), '.');
if (!dot) Error("enum values need to be qualified by an enum type");
std::string enum_def_str(word.c_str(), dot);
std::string enum_val_str(dot + 1, word.c_str() + word.length());
auto enum_def = enums_.Lookup(enum_def_str);
if (!enum_def) Error("unknown enum: " + enum_def_str);
auto enum_val = enum_def->vals.Lookup(enum_val_str);
if (!enum_val) Error("unknown enum value: " + enum_val_str);
result |= enum_val->value;
}
} while(*next);
return result;
}
void Parser::ParseSingleValue(Value &e) {
// First check if this could be a string/identifier enum value:
if (e.type.base_type != BASE_TYPE_STRING &&
e.type.base_type != BASE_TYPE_NONE &&
(token_ == kTokenIdentifier || token_ == kTokenStringConstant)) {
e.constant = NumToString(ParseIntegerFromString(e.type));
Next();
} else if (TryTypedValue(kTokenIntegerConstant,
IsScalar(e.type.base_type),
e,
BASE_TYPE_INT) ||
TryTypedValue(kTokenFloatConstant,
IsFloat(e.type.base_type),
e,
BASE_TYPE_FLOAT) ||
TryTypedValue(kTokenStringConstant,
e.type.base_type == BASE_TYPE_STRING,
e,
BASE_TYPE_STRING)) {
} else {
Error("cannot parse value starting with: " + TokenToString(token_));
}
}
StructDef *Parser::LookupCreateStruct(const std::string &name) {
auto struct_def = structs_.Lookup(name);
if (!struct_def) {
// Rather than failing, we create a "pre declared" StructDef, due to
// circular references, and check for errors at the end of parsing.
struct_def = new StructDef();
structs_.Add(name, struct_def);
struct_def->name = name;
struct_def->predecl = true;
Wouter van Oortmerssen
committed
struct_def->defined_namespace = namespaces_.back();
}
return struct_def;
}
void Parser::ParseEnum(bool is_union) {
std::string dc = doc_comment_;
Next();
std::string name = attribute_;
Expect(kTokenIdentifier);
auto &enum_def = *new EnumDef();
enum_def.name = name;
enum_def.doc_comment = dc;
enum_def.is_union = is_union;
if (enums_.Add(name, &enum_def)) Error("enum already exists: " + name);
if (is_union) {
enum_def.underlying_type.base_type = BASE_TYPE_UTYPE;
enum_def.underlying_type.enum_def = &enum_def;
} else {
// Give specialized error message, since this type spec used to
// be optional in the first FlatBuffers release.
if (!IsNext(':')) Error("must specify the underlying integer type for this"
" enum (e.g. \': short\', which was the default).");
// Specify the integer type underlying this enum.
ParseType(enum_def.underlying_type);
if (!IsInteger(enum_def.underlying_type.base_type))
Error("underlying enum type must be integral");
// Make this type refer back to the enum it was derived from.
enum_def.underlying_type.enum_def = &enum_def;
}
ParseMetaData(enum_def);
Expect('{');
if (is_union) enum_def.vals.Add("NONE", new EnumVal("NONE", 0));
do {
std::string name = attribute_;
std::string dc = doc_comment_;
Expect(kTokenIdentifier);
auto prevsize = enum_def.vals.vec.size();
Wouter van Oortmerssen
committed
auto value = enum_def.vals.vec.size()
? enum_def.vals.vec.back()->value + 1
: 0;
auto &ev = *new EnumVal(name, value);
if (enum_def.vals.Add(name, &ev))
Error("enum value already exists: " + name);
ev.doc_comment = dc;
if (is_union) {
ev.struct_def = LookupCreateStruct(name);
}
if (IsNext('=')) {
ev.value = atoi(attribute_.c_str());
Expect(kTokenIntegerConstant);
if (prevsize && enum_def.vals.vec[prevsize - 1]->value >= ev.value)
Error("enum values must be specified in ascending order");
}
} while (IsNext(',') && token_ != '}');
Wouter van Oortmerssen
committed
if (enum_def.attributes.Lookup("bit_flags")) {
for (auto it = enum_def.vals.vec.begin(); it != enum_def.vals.vec.end();
++it) {
if (static_cast<size_t>((*it)->value) >=
SizeOf(enum_def.underlying_type.base_type) * 8)
Error("bit flag out of range of underlying integral type");
(*it)->value = 1LL << (*it)->value;
Wouter van Oortmerssen
committed
}
}
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
}
void Parser::ParseDecl() {
std::string dc = doc_comment_;
bool fixed = IsNext(kTokenStruct);
if (!fixed) Expect(kTokenTable);
std::string name = attribute_;
Expect(kTokenIdentifier);
auto &struct_def = *LookupCreateStruct(name);
if (!struct_def.predecl) Error("datatype already exists: " + name);
struct_def.predecl = false;
struct_def.name = name;
struct_def.doc_comment = dc;
struct_def.fixed = fixed;
// Move this struct to the back of the vector just in case it was predeclared,
// to preserve declartion order.
remove(structs_.vec.begin(), structs_.vec.end(), &struct_def);
structs_.vec.back() = &struct_def;
ParseMetaData(struct_def);
struct_def.sortbysize =
struct_def.attributes.Lookup("original_order") == nullptr && !fixed;
Expect('{');
while (token_ != '}') ParseField(struct_def);
auto force_align = struct_def.attributes.Lookup("force_align");
if (fixed && force_align) {
auto align = static_cast<size_t>(atoi(force_align->constant.c_str()));
if (force_align->type.base_type != BASE_TYPE_INT ||
align < struct_def.minalign ||
align > 256 ||
align & (align - 1))
Error("force_align must be a power of two integer ranging from the"
"struct\'s natural alignment to 256");
struct_def.minalign = align;
}
struct_def.PadLastField(struct_def.minalign);
// Check if this is a table that has manual id assignments
auto &fields = struct_def.fields.vec;
if (!struct_def.fixed && fields.size()) {
size_t num_id_fields = 0;
for (auto it = fields.begin(); it != fields.end(); ++it) {
if ((*it)->attributes.Lookup("id")) num_id_fields++;
}
// If any fields have ids..
if (num_id_fields) {
// Then all fields must have them.
if (num_id_fields != fields.size())
Error("either all fields or no fields must have an 'id' attribute");
// Simply sort by id, then the fields are the same as if no ids had
// been specified.
std::sort(fields.begin(), fields.end(),
[](const FieldDef *a, const FieldDef *b) -> bool {
auto a_id = atoi(a->attributes.Lookup("id")->constant.c_str());
auto b_id = atoi(b->attributes.Lookup("id")->constant.c_str());
return a_id < b_id;
});
// Verify we have a contiguous set, and reassign vtable offsets.
for (int i = 0; i < static_cast<int>(fields.size()); i++) {
if (i != atoi(fields[i]->attributes.Lookup("id")->constant.c_str()))
Error("field id\'s must be consecutive from 0, id " +
NumToString(i) + " missing or set twice");
fields[i]->value.offset = FieldIndexToOffset(static_cast<voffset_t>(i));
}
}
}
Wouter van Oortmerssen
committed
// Check that no identifiers clash with auto generated fields.
// This is not an ideal situation, but should occur very infrequently,
// and allows us to keep using very readable names for type & length fields
// without inducing compile errors.
auto CheckClash = [&fields, &struct_def](const char *suffix,
BaseType basetype) {
auto len = strlen(suffix);
for (auto it = fields.begin(); it != fields.end(); ++it) {
auto &name = (*it)->name;
if (name.length() > len &&
name.compare(name.length() - len, len, suffix) == 0 &&
(*it)->value.type.base_type != BASE_TYPE_UTYPE) {
auto field = struct_def.fields.Lookup(
name.substr(0, name.length() - len));
if (field && field->value.type.base_type == basetype)
Error("Field " + name +
" would clash with generated functions for field " +
field->name);
}
}
};
CheckClash("_type", BASE_TYPE_UNION);
CheckClash("Type", BASE_TYPE_UNION);
CheckClash("_length", BASE_TYPE_VECTOR);
CheckClash("Length", BASE_TYPE_VECTOR);
Expect('}');
}
bool Parser::SetRootType(const char *name) {
root_struct_def = structs_.Lookup(name);
return root_struct_def != nullptr;
}
void Parser::MarkGenerated() {
// Since the Parser object retains definitions across files, we must
// ensure we only output code for definitions once, in the file they are first
// declared. This function marks all existing definitions as having already
// been generated.
for (auto it = enums_.vec.begin();
it != enums_.vec.end(); ++it) {
(*it)->generated = true;
}
for (auto it = structs_.vec.begin();
it != structs_.vec.end(); ++it) {
(*it)->generated = true;
}
}
bool Parser::Parse(const char *source, const char *filepath) {
included_files_[filepath] = true;
// This is the starting point to reset to if we interrupted our parsing
// to deal with an include:
restart_parse_after_include:
source_ = cursor_ = source;
line_ = 1;
error_.clear();
builder_.Clear();
try {
Next();
// Includes must come first:
while (IsNext(kTokenInclude)) {
auto name = attribute_;
Expect(kTokenStringConstant);
auto path = StripFileName(filepath);
if (path.length()) name = path + kPathSeparator + name;
if (included_files_.find(name) == included_files_.end()) {
// We found an include file that we have not parsed yet.
// Load it and parse it.
std::string contents;
if (!LoadFile(name.c_str(), true, &contents))
Error("unable to load include file: " + name);
Parse(contents.c_str(), name.c_str());
// Any errors, we're done.
if (error_.length()) return false;
// We do not want to output code for any included files:
MarkGenerated();
// This is the easiest way to continue this file after an include:
// instead of saving and restoring all the state, we simply start the
// file anew. This will cause it to encounter the same include statement
// again, but this time it will skip it, because it was entered into
// included_files_.
goto restart_parse_after_include;
}
Expect(';');
}
// Now parse all other kinds of declarations:
while (token_ != kTokenEof) {
if (token_ == kTokenNameSpace) {
Next();
Wouter van Oortmerssen
committed
auto ns = new Namespace();
namespaces_.push_back(ns);
Wouter van Oortmerssen
committed
ns->components.push_back(attribute_);
Expect(kTokenIdentifier);
if (!IsNext('.')) break;
}
Expect(';');
} else if (token_ == '{') {
if (!root_struct_def) Error("no root type set to parse json with");
if (builder_.GetSize()) {
Error("cannot have more than one json object in a file");
}
builder_.Finish(Offset<Table>(ParseTable(*root_struct_def)));
} else if (token_ == kTokenEnum) {
ParseEnum(false);
} else if (token_ == kTokenUnion) {
ParseEnum(true);
} else if (token_ == kTokenRootType) {
Next();
auto root_type = attribute_;
Expect(kTokenIdentifier);
if (!SetRootType(root_type.c_str()))
Error("unknown root type: " + root_type);
if (root_struct_def->fixed)
Error("root type must be a table");
Expect(';');
} else if (token_ == kTokenFileIdentifier) {
Next();
file_identifier_ = attribute_;
Expect(kTokenStringConstant);
if (file_identifier_.length() !=
FlatBufferBuilder::kFileIdentifierLength)
Error("file_identifier must be exactly " +
NumToString(FlatBufferBuilder::kFileIdentifierLength) +
" characters");
Expect(';');
} else if (token_ == kTokenFileExtension) {
Next();
file_extension_ = attribute_;
Expect(kTokenStringConstant);
Expect(';');
} else if(token_ == kTokenInclude) {
Error("includes must come before declarations");
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
} else {
ParseDecl();
}
}
for (auto it = structs_.vec.begin(); it != structs_.vec.end(); ++it) {
if ((*it)->predecl)
Error("type referenced but not defined: " + (*it)->name);
}
for (auto it = enums_.vec.begin(); it != enums_.vec.end(); ++it) {
auto &enum_def = **it;
if (enum_def.is_union) {
for (auto it = enum_def.vals.vec.begin();
it != enum_def.vals.vec.end();
++it) {
auto &val = **it;
if (val.struct_def && val.struct_def->fixed)
Error("only tables can be union elements: " + val.name);
}
}
}
} catch (const std::string &msg) {
error_ = "line " + NumToString(line_) + ": " + msg;
return false;
}
assert(!struct_stack_.size());
return true;
}
} // namespace flatbuffers