Newer
Older
use std::io::{self, Chars, Read, Stdout, Write};
use nix::sys::termios;
use consts::{self, KeyPress};
use super::{truncate, width, Position, RawMode, RawReader, Renderer, Term};
const STDIN_FILENO: libc::c_int = libc::STDIN_FILENO;
const STDOUT_FILENO: libc::c_int = libc::STDOUT_FILENO;
/// Unsupported Terminals that don't support RAW mode
static UNSUPPORTED_TERM: [&'static str; 3] = ["dumb", "cons25", "emacs"];
use std::mem::zeroed;
unsafe {
let mut size: libc::winsize = zeroed();
match libc::ioctl(STDOUT_FILENO, libc::TIOCGWINSZ, &mut size) {
0 => (size.ws_col as usize, size.ws_row as usize), // TODO getCursorPosition
_ => (80, 24),
}
}
}
/// Check TERM environment variable to see if current term is in our
/// unsupported list
fn is_unsupported_term() -> bool {
match std::env::var("TERM") {
Ok(term) => {
for iter in &UNSUPPORTED_TERM {
}
Err(_) => false,
}
}
/// Return whether or not STDIN, STDOUT or STDERR is a TTY
fn is_a_tty(fd: libc::c_int) -> bool {
unsafe { libc::isatty(fd) != 0 }
}
impl RawMode for Mode {
/// Disable RAW mode for the terminal.
fn disable_raw_mode(&self) -> Result<()> {
try!(termios::tcsetattr(STDIN_FILENO, SetArg::TCSADRAIN, self));
// Rust std::io::Stdin is buffered with no way to know if bytes are available.
// So we use low-level stuff instead...
struct StdinRaw {}
impl Read for StdinRaw {
fn read(&mut self, buf: &mut [u8]) -> io::Result<usize> {
libc::read(
STDIN_FILENO,
buf.as_mut_ptr() as *mut libc::c_void,
buf.len() as libc::size_t,
)
};
if res == -1 {
let error = io::Error::last_os_error();
if error.kind() != io::ErrorKind::Interrupted {
return Err(error);
}
} else {
return Ok(res as usize);
}
fn new(config: &Config) -> Result<PosixRawReader> {
fn escape_sequence(&mut self) -> Result<KeyPress> {
// Read the next two bytes representing the escape sequence.
let seq1 = try!(self.next_char());
if seq1 == '[' {
let seq2 = try!(self.next_char());
if seq2.is_digit(10) {
// Extended escape, read additional byte.
let seq3 = try!(self.next_char());
if seq3 == '~' {
debug!(target: "rustyline",
"unsupported esc sequence: ESC [ {} ~", seq2);
} else if seq3.is_digit(10) {
let seq4 = try!(self.next_char());
if seq4 == '~' {
Ok(match (seq2, seq3) {
('1', '1') => KeyPress::F(1), // rxvt-unicode
('1', '2') => KeyPress::F(2), // rxvt-unicode
('1', '3') => KeyPress::F(3), // rxvt-unicode
('1', '4') => KeyPress::F(4), // rxvt-unicode
('1', '5') => KeyPress::F(5), // kf5
('1', '7') => KeyPress::F(6), // kf6
('1', '8') => KeyPress::F(7), // kf7
('1', '9') => KeyPress::F(8), // kf8
('2', '0') => KeyPress::F(9), // kf9
('2', '1') => KeyPress::F(10), // kf10
('2', '3') => KeyPress::F(11), // kf11
('2', '4') => KeyPress::F(12), // kf12
_ => {
debug!(target: "rustyline",
"unsupported esc sequence: ESC [ {}{} ~", seq1, seq2);
} else if seq4 == ';' {
let seq5 = try!(self.next_char());
if seq5.is_digit(10) {
let seq6 = try!(self.next_char()); // '~' expected
debug!(target: "rustyline",
"unsupported esc sequence: ESC [ {}{} ; {} {}", seq2, seq3, seq5, seq6);
debug!(target: "rustyline",
"unsupported esc sequence: ESC [ {}{} ; {:?}", seq2, seq3, seq5);
debug!(target: "rustyline",
"unsupported esc sequence: ESC [ {}{} {:?}", seq2, seq3, seq4);
Ok(KeyPress::UnknownEscSeq)
}
} else if seq3 == ';' {
let seq4 = try!(self.next_char());
if seq4.is_digit(10) {
let seq5 = try!(self.next_char());
if seq2 == '1' {
Ok(match (seq4, seq5) {
('5', 'A') => KeyPress::ControlUp,
('5', 'B') => KeyPress::ControlDown,
('5', 'C') => KeyPress::ControlRight,
('5', 'D') => KeyPress::ControlLeft,
('2', 'A') => KeyPress::ShiftUp,
('2', 'B') => KeyPress::ShiftDown,
('2', 'C') => KeyPress::ShiftRight,
('2', 'D') => KeyPress::ShiftLeft,
_ => {
debug!(target: "rustyline",
"unsupported esc sequence: ESC [ {} ; {} {}", seq2, seq4, seq5);
debug!(target: "rustyline",
"unsupported esc sequence: ESC [ {} ; {} {}", seq2, seq4, seq5);
debug!(target: "rustyline",
"unsupported esc sequence: ESC [ {} ; {:?}", seq2, seq4);
('5', 'A') => KeyPress::ControlUp,
('5', 'B') => KeyPress::ControlDown,
('5', 'C') => KeyPress::ControlRight,
('5', 'D') => KeyPress::ControlLeft,
_ => {
debug!(target: "rustyline",
"unsupported esc sequence: ESC [ {} {:?}", seq2, seq3);
'F' => KeyPress::End,
'H' => KeyPress::Home, // khome
_ => {
debug!(target: "rustyline", "unsupported esc sequence: ESC [ {:?}", seq2);
KeyPress::UnknownEscSeq
}
})
}
} else if seq1 == 'O' {
let seq2 = try!(self.next_char());
'D' => KeyPress::Left, // kcub1
'F' => KeyPress::End, // kend
'H' => KeyPress::Home, // khome
'P' => KeyPress::F(1), // kf1
'Q' => KeyPress::F(2), // kf2
'R' => KeyPress::F(3), // kf3
'S' => KeyPress::F(4), // kf4
_ => {
debug!(target: "rustyline", "unsupported esc sequence: ESC O {:?}", seq2);
KeyPress::UnknownEscSeq
}
})
} else {
// TODO ESC-R (r): Undo all changes made to this line.
let c = try!(self.next_char());
let mut key = consts::char_to_key_press(c);
let mut fds = [poll::PollFd::new(STDIN_FILENO, EventFlags::POLLIN)];
Ok(n) if n == 0 => {
// single escape
}
Ok(_) => {
// escape sequence
key = try!(self.escape_sequence())
}
// Err(ref e) if e.kind() == ErrorKind::Interrupted => continue,
Err(e) => return Err(e.into()),
}
Ok(key)
}
fn next_char(&mut self) -> Result<char> {
match self.chars.next() {
Some(c) => Ok(try!(c)),
None => Err(error::ReadlineError::Eof),
}
}
}
/// Console output writer
pub struct PosixRenderer {
out: Stdout,
cols: usize, // Number of columns in terminal
}
impl PosixRenderer {
fn new() -> PosixRenderer {
let (cols, _) = get_win_size();
PosixRenderer {
out: io::stdout(),
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
}
}
}
impl Renderer for PosixRenderer {
fn move_cursor(&mut self, old: Position, new: Position) -> Result<()> {
use std::fmt::Write;
let mut ab = String::new();
if new.row > old.row {
// move down
let row_shift = new.row - old.row;
if row_shift == 1 {
ab.push_str("\x1b[B");
} else {
write!(ab, "\x1b[{}B", row_shift).unwrap();
}
} else if new.row < old.row {
// move up
let row_shift = old.row - new.row;
if row_shift == 1 {
ab.push_str("\x1b[A");
} else {
write!(ab, "\x1b[{}A", row_shift).unwrap();
}
}
if new.col > old.col {
// move right
let col_shift = new.col - old.col;
if col_shift == 1 {
ab.push_str("\x1b[C");
} else {
write!(ab, "\x1b[{}C", col_shift).unwrap();
}
} else if new.col < old.col {
// move left
let col_shift = old.col - new.col;
if col_shift == 1 {
ab.push_str("\x1b[D");
} else {
write!(ab, "\x1b[{}D", col_shift).unwrap();
}
}
self.write_and_flush(ab.as_bytes())
}
fn refresh_line(
&mut self,
prompt: &str,
prompt_size: Position,
line: &LineBuffer,
current_row: usize,
old_rows: usize,
) -> Result<(Position, Position)> {
use std::fmt::Write;
let mut ab = String::new();
// calculate the position of the end of the input line
let end_pos = self.calculate_position(line, prompt_size);
// calculate the desired position of the cursor
let cursor = self.calculate_position(&line[..line.pos()], prompt_size);
// self.old_rows < self.cursor.row if the prompt spans multiple lines and if
// this is the default State.
let cursor_row_movement = old_rows.checked_sub(current_row).unwrap_or(0);
// move the cursor down as required
if cursor_row_movement > 0 {
write!(ab, "\x1b[{}B", cursor_row_movement).unwrap();
}
// clear old rows
for _ in 0..old_rows {
}
// clear the line
ab.push_str("\r\x1b[0K");
// display the prompt
ab.push_str(prompt);
// display the input line
ab.push_str(line);
// display hint
if let Some(hint) = hint {
ab.push_str(truncate(&hint, end_pos.col, self.cols));
}
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
// we have to generate our own newline on line wrap
if end_pos.col == 0 && end_pos.row > 0 {
ab.push_str("\n");
}
// position the cursor
let cursor_row_movement = end_pos.row - cursor.row;
// move the cursor up as required
if cursor_row_movement > 0 {
write!(ab, "\x1b[{}A", cursor_row_movement).unwrap();
}
// position the cursor within the line
if cursor.col > 0 {
write!(ab, "\r\x1b[{}C", cursor.col).unwrap();
} else {
ab.push('\r');
}
try!(self.write_and_flush(ab.as_bytes()));
Ok((cursor, end_pos))
}
fn write_and_flush(&mut self, buf: &[u8]) -> Result<()> {
try!(self.out.write_all(buf));
try!(self.out.flush());
Ok(())
}
/// Control characters are treated as having zero width.
/// Characters with 2 column width are correctly handled (not splitted).
#[allow(if_same_then_else)]
fn calculate_position(&self, s: &str, orig: Position) -> Position {
let mut pos = orig;
let mut esc_seq = 0;
for c in s.graphemes(true) {
if c == "\n" {
pos.row += 1;
continue;
}
let cw = width(c, &mut esc_seq);
pos.col += cw;
if pos.col > self.cols {
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
}
}
if pos.col == self.cols {
pos.col = 0;
pos.row += 1;
}
pos
}
/// Clear the screen. Used to handle ctrl+l
fn clear_screen(&mut self) -> Result<()> {
self.write_and_flush(b"\x1b[H\x1b[2J")
}
/// Check if a SIGWINCH signal has been received
fn sigwinch(&self) -> bool {
SIGWINCH.compare_and_swap(true, false, atomic::Ordering::SeqCst)
}
/// Try to update the number of columns in the current terminal,
fn update_size(&mut self) {
let (cols, _) = get_win_size();
self.cols = cols;
}
fn get_columns(&self) -> usize {
self.cols
}
/// Try to get the number of rows in the current terminal,
/// or assume 24 if it fails.
fn get_rows(&self) -> usize {
let (_, rows) = get_win_size();
rows
}
}
static SIGWINCH_ONCE: sync::Once = sync::ONCE_INIT;
static SIGWINCH: atomic::AtomicBool = atomic::ATOMIC_BOOL_INIT;
let sigwinch = signal::SigAction::new(
signal::SigHandler::Handler(sigwinch_handler),
signal::SaFlags::empty(),
signal::SigSet::empty(),
);
let _ = signal::sigaction(signal::SIGWINCH, &sigwinch);
});
}
SIGWINCH.store(true, atomic::Ordering::SeqCst);
pub type Terminal = PosixTerminal;
pub struct PosixTerminal {
unsupported: bool,
stdin_isatty: bool,
}
unsupported: is_unsupported_term(),
stdin_isatty: is_a_tty(STDIN_FILENO),
};
if !term.unsupported && term.stdin_isatty && is_a_tty(STDOUT_FILENO) {
install_sigwinch_handler();
}
/// Check if current terminal can provide a rich line-editing user
/// interface.
self.unsupported
}
/// check if stdin is connected to a terminal.
fn enable_raw_mode(&self) -> Result<Mode> {
use nix::errno::Errno::ENOTTY;
use nix::sys::termios::{ControlFlags, InputFlags, LocalFlags, SpecialCharacterIndices};
if !self.stdin_isatty {
try!(Err(nix::Error::from_errno(ENOTTY)));
}
let original_mode = try!(termios::tcgetattr(STDIN_FILENO));
// disable BREAK interrupt, CR to NL conversion on input,
// input parity check, strip high bit (bit 8), output flow control
raw.input_flags &= !(InputFlags::BRKINT | InputFlags::ICRNL | InputFlags::INPCK
| InputFlags::ISTRIP | InputFlags::IXON);
// we don't want raw output, it turns newlines into straight linefeeds
// raw.c_oflag = raw.c_oflag & !(OutputFlags::OPOST); // disable all output
// processing
raw.control_flags |= ControlFlags::CS8; // character-size mark (8 bits)
// disable echoing, canonical mode, extended input processing and signals
raw.local_flags &=
!(LocalFlags::ECHO | LocalFlags::ICANON | LocalFlags::IEXTEN | LocalFlags::ISIG);
raw.control_chars[SpecialCharacterIndices::VMIN as usize] = 1; // One character-at-a-time input
raw.control_chars[SpecialCharacterIndices::VTIME as usize] = 0; // with blocking read
try!(termios::tcsetattr(STDIN_FILENO, SetArg::TCSADRAIN, &raw));
fn create_reader(&self, config: &Config) -> Result<PosixRawReader> {
PosixRawReader::new(config)
fn create_writer(&self) -> PosixRenderer {
PosixRenderer::new()
use std::io::{self, Stdout};
use super::{Position, Renderer};
#[test]
fn prompt_with_ansi_escape_codes() {
let out = io::stdout();
let pos = out.calculate_position("\x1b[1;32m>>\x1b[0m ", Position::default(), 80);
assert_eq!(3, pos.col);
assert_eq!(0, pos.row);
}