Newer
Older
// Copyright 2018 Google Inc.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//
///////////////////////////////////////////////////////////////////////////////
#ifdef __SSE4_1__
#ifdef __AES__
#include "tink/subtle/aes_eax_aesni.h"
#include <emmintrin.h> // SSE2: used for _mm_sub_epi64 _mm_unpacklo_epi64 etc.
#include <smmintrin.h> // SSE4: used for _mm_cmpeq_epi64
#include <tmmintrin.h> // SSE3: used for _mm_shuffle_epi8
#include <wmmintrin.h> // AES_NI instructions.
#include <xmmintrin.h> // Datatype _mm128i
#include <string>
#include <vector>
#include <memory>
#include "tink/subtle/random.h"
#include "tink/subtle/subtle_util_boringssl.h"
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
namespace crypto {
namespace tink {
namespace subtle {
namespace {
inline bool EqualBlocks(__m128i x, __m128i y) {
// Compare byte wise.
// A byte in eq is 0xff if the corresponding byte in x and y are equal
// and 0x00 if the corresponding byte in x and y are not equal.
__m128i eq = _mm_cmpeq_epi8(x, y);
// Extract the 16 most significant bits of each byte in eq.
int bits = _mm_movemask_epi8(eq);
return 0xFFFF == bits;
}
// Reverse the order of the bytes in x.
inline __m128i Reverse(__m128i x) {
const __m128i reverse_order =
_mm_set_epi32(0x00010203, 0x04050607, 0x08090a0b, 0x0c0d0e0f);
return _mm_shuffle_epi8(x, reverse_order);
}
// Increment x by 1.
// This function assumes that the bytes of x are in little endian order.
// Hence before using the result in EAX the bytes must be reversed, since EAX
// requires a counter value in big endian order.
inline __m128i Increment(__m128i x) {
const __m128i mask =
_mm_set_epi32(0xffffffff, 0xffffffff, 0xffffffff, 0xffffffff);
// Determine which of the two 64-bit parts of x overflow.
// The result is 0xff..ff if the corresponding integers overflows and 0
// otherwise.
__m128i carries = _mm_cmpeq_epi64(x, mask); // SSE4
// Move the least significant 64 carry bits into the most significant 64 bits
// of diff and fill the least significant bits of diff with 0xff..ff.
__m128i diff = _mm_unpacklo_epi64(mask, carries);
// Use subtraction since the 64-bit parts that must be incremented contain
// the value -1.
return _mm_sub_epi64(x, diff);
}
// Add y to x.
// This assumes that x is in little endian order.
// So far I've not found a simple way to compute and add the carry using
// xmm instructions. However, optimizing this function is not important,
// since it is used just once during decryption.
inline __m128i Add(__m128i x, uint64 y) {
// Convert to a vector of two uint64.
uint64 vec[2];
tholenst
committed
_mm_storeu_si128(reinterpret_cast<__m128i*>(vec), x);
// Perform the addition on the vector.
vec[0] += y;
if (y > vec[0]) {
vec[1]++;
}
// Convert back to xmm.
tholenst
committed
return _mm_loadu_si128(reinterpret_cast<__m128i*>(vec));
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
}
// Decrement x by 1.
// This function assumes that the bytes of x are in little endian order.
// Hence before using the result in EAX the bytes must be reversed, since EAX
// requires a counter value in big endian order.
inline __m128i Decrement(__m128i x) {
const __m128i zero = _mm_setzero_si128();
// Moves lower 64 bit of x into higher 64 bits and set the lower 64 bits to 0.
__m128i shifted = _mm_slli_si128(x, 8);
// Determines whether the lower and upper parts must be decremented.
// I.e. the lower 64 bits must always be decremented.
// The upper 64 bits must be decremented if the lower 64 bits of x are 0.
__m128i carries = _mm_cmpeq_epi64(shifted, zero); // SSE4
// Use add since _mm_cmpeq_epi64 returns -1 for 64-bit parts that are equal.
return _mm_add_epi64(x, carries);
}
// Rotate a value by 32 bit to the left (assuming little endian order).
inline __m128i RotLeft32(__m128i value) {
return _mm_shuffle_epi32(value, _MM_SHUFFLE(2, 1, 0, 3));
}
// Multiply a binary polynomial given in big endian order by x
// and reduce modulo x^128 + x^7 + x^2 + x + 1
inline __m128i MultiplyByX(__m128i value) {
// Convert big endian to little endian.,
value = Reverse(value);
// Sets each dword to 0xffffffff if the most significant bit of the same
// dword in value is set.
__m128i msb = _mm_srai_epi32(value, 31);
__m128i msb_rotated = RotLeft32(msb);
// Determines the carries. If the most signigicant bit in value is set,
// then this bit is reduced to x^7 + x^2 + x + 1
// (which corresponds to the constant 0x87).
__m128i carry = _mm_and_si128(msb_rotated, _mm_set_epi32(1, 1, 1, 0x87));
__m128i res = _mm_xor_si128(_mm_slli_epi32(value, 1), carry);
// Converts the result back to big endian order.
return Reverse(res);
}
// Load block[0]..block[block_size-1] into the least significant bytes of
// a register and set the remaining bytes to 0. The efficiency of this function
// is not critical.
__m128i LoadPartialBlock(const uint8_t* block, size_t block_size) {
uint8_t tmp[16];
memset(tmp, 0, 16);
memmove(tmp, block, block_size);
tholenst
committed
return _mm_loadu_si128(reinterpret_cast<__m128i*>(tmp));
}
// Store the block_size least significant bytes from value in
// block[0] .. block[block_size - 1]. The efficiency of this procedure is not
// critical.
void StorePartialBlock(uint8_t* block, size_t block_size, __m128i value) {
uint8_t tmp[16];
tholenst
committed
_mm_storeu_si128(reinterpret_cast<__m128i*>(tmp), value);
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
memmove(block, tmp, block_size);
}
static const uint8_t kRoundConstant[11] =
{0x00, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x1b, 0x36};
// Returns the round constant for round i.
uint8_t Rcon(int round) {
return kRoundConstant[round];
}
// Call the AESKEYGENASSIST operation on a 32-bit input.
// This performs a rotation and a substitution with an S-box.
// This implementation uses AESKEYGENASSIST to compute the result twice
// and checks that the two results match.
inline uint32 SubRot(uint32 tmp) {
__m128i inp = _mm_set_epi32(0, 0, tmp, 0);
__m128i out = _mm_aeskeygenassist_si128(inp, 0x00);
return _mm_extract_epi32(out, 1);
}
// Apply the S-box to the 4 bytes in a word.
// This operation is used in the key expansion of 256-bit keys.
// This implementation computes the result twice and checks equality.
inline uint32 SubWord(uint32 tmp) {
__m128i inp = _mm_set_epi32(0, 0, tmp, 0);
__m128i out = _mm_aeskeygenassist_si128(inp, 0x00);
return _mm_extract_epi32(out, 0);
}
// The following code uses a key expansion that closely follows FIPS 197.
// If necessary it is possible to unroll the loops.
void Aes128KeyExpansion(const uint8_t* key, __m128i *round_key) {
const int Nk = 4; // Number of words in the key
const int Nb = 4; // Number of words per round key
const int Nr = 10; // Number or rounds
uint32 *w = reinterpret_cast<uint32*>(round_key);
const uint32 *keywords = reinterpret_cast<const uint32*>(key);
for (int i = 0; i < Nk; i++) {
w[i] = keywords[i];
}
uint32 tmp = w[Nk - 1];
for (int i = Nk; i < Nb * (Nr + 1); i++) {
if (i % Nk == 0) {
tmp = SubRot(tmp) ^ Rcon(i / Nk);
}
tmp ^= w[i - Nk];
w[i] = tmp;
}
}
void Aes256KeyExpansion(const uint8_t* key, __m128i *round_key) {
const int Nk = 8; // Number of words in the key
const int Nb = 4; // Number of words per round key
const int Nr = 14; // Number or rounds
uint32 *w = reinterpret_cast<uint32*>(round_key);
const uint32 *keywords = reinterpret_cast<const uint32*>(key);
for (int i = 0; i < Nk; i++) {
w[i] = keywords[i];
}
uint32 tmp = w[Nk - 1];
for (int i = Nk; i < Nb * (Nr + 1); i++) {
if (i % Nk == 0) {
tmp = SubRot(tmp) ^ Rcon(i / Nk);
} else if (i % 4 == 0) {
tmp = SubWord(tmp);
}
tmp ^= w[i - Nk];
w[i] = tmp;
}
}
} // namespace
crypto::tink::util::StatusOr<std::unique_ptr<Aead>> AesEaxAesni::New(
absl::string_view key_value,
size_t nonce_size_in_bytes) {
std::unique_ptr<AesEaxAesni> eax(new AesEaxAesni());
if (eax->SetKey(key_value, nonce_size_in_bytes)) {
return std::unique_ptr<Aead>(eax.release());
} else {
return util::Status(util::error::INTERNAL, "Invalid key");
}
}
bool AesEaxAesni::SetKey(
absl::string_view key_value,
size_t nonce_size_in_bytes) {
if (nonce_size_in_bytes != 12 && nonce_size_in_bytes != 16) {
return false;
}
nonce_size_ = nonce_size_in_bytes;
size_t key_size = key_value.size();
const uint8_t* key = reinterpret_cast<const uint8_t*>(key_value.data());
if (key_size == 16) {
rounds_ = 10;
Aes128KeyExpansion(key, round_key_);
} else if (key_size == 32) {
rounds_ = 14;
Aes256KeyExpansion(key, round_key_);
} else {
return false;
}
// Determine the round keys for decryption.
round_dec_key_[0] = round_key_[rounds_];
round_dec_key_[rounds_] = round_key_[0];
for (int i = 1; i < rounds_; i++) {
round_dec_key_[i] = _mm_aesimc_si128(round_key_[rounds_ - i]);
}
// Derive the paddings from the key.
__m128i zero = _mm_setzero_si128();
__m128i zero_encrypted = EncryptBlock(zero);
B_ = MultiplyByX(zero_encrypted);
P_ = MultiplyByX(B_);
return true;
}
inline void AesEaxAesni::Encrypt3Decrypt1(
const __m128i in0,
const __m128i in1,
const __m128i in2,
const __m128i in_dec,
__m128i* out0,
__m128i* out1,
__m128i* out2,
__m128i* out_dec) const {
__m128i first_round = round_key_[0];
__m128i tmp0 = _mm_xor_si128(in0, first_round);
__m128i tmp1 = _mm_xor_si128(in1, first_round);
__m128i tmp2 = _mm_xor_si128(in2, first_round);
__m128i tmp3 = _mm_xor_si128(in_dec, round_dec_key_[0]);
for (int i = 1; i < rounds_; i++){
__m128i round_key = round_key_[i];
tmp0 = _mm_aesenc_si128(tmp0, round_key);
tmp1 = _mm_aesenc_si128(tmp1, round_key);
tmp2 = _mm_aesenc_si128(tmp2, round_key);
tmp3 = _mm_aesdec_si128(tmp3, round_dec_key_[i]);
}
__m128i last_round = round_key_[rounds_];
*out0 = _mm_aesenclast_si128(tmp0, last_round);
*out1 = _mm_aesenclast_si128(tmp1, last_round);
*out2 = _mm_aesenclast_si128(tmp2, last_round);
*out_dec = _mm_aesdeclast_si128(tmp3, round_dec_key_[rounds_]);
}
inline __m128i AesEaxAesni::EncryptBlock(__m128i block) const {
__m128i tmp = _mm_xor_si128(block, round_key_[0]);
for (int i = 1; i < rounds_; i++){
tmp = _mm_aesenc_si128(tmp, round_key_[i]);
}
return _mm_aesenclast_si128(tmp, round_key_[rounds_]);
}
inline void AesEaxAesni::Encrypt2Blocks(
const __m128i in0, const __m128i in1, __m128i *out0, __m128i *out1) const {
__m128i tmp0 = _mm_xor_si128(in0, round_key_[0]);
__m128i tmp1 = _mm_xor_si128(in1, round_key_[0]);
for (int i = 1; i < rounds_; i++){
__m128i round_key = round_key_[i];
tmp0 = _mm_aesenc_si128(tmp0, round_key);
tmp1 = _mm_aesenc_si128(tmp1, round_key);
}
__m128i last_round = round_key_[rounds_];
*out0 = _mm_aesenclast_si128(tmp0, last_round);
*out1 = _mm_aesenclast_si128(tmp1, last_round);
}
__m128i AesEaxAesni::Pad(const uint8_t* data, int len) const {
// CHECK(0 <= len && len <= BLOCK_SIZE);
// TODO(bleichen): Is there a better way to load n bytes into a register
uint8_t tmp[BLOCK_SIZE];
memset(tmp, 0, BLOCK_SIZE);
memmove(tmp, data, len);
if (len == BLOCK_SIZE) {
tholenst
committed
__m128i block = _mm_loadu_si128(reinterpret_cast<__m128i*>(tmp));
return _mm_xor_si128(block, B_);
} else {
tmp[len] = 0x80;
tholenst
committed
__m128i block = _mm_loadu_si128(reinterpret_cast<__m128i*>(tmp));
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
return _mm_xor_si128(block, P_);
}
}
__m128i AesEaxAesni::OMAC(absl::string_view blob, int tag) const {
const uint8_t* data = reinterpret_cast<const uint8_t*>(blob.data());
size_t len = blob.size();
__m128i state = _mm_set_epi32(tag << 24, 0, 0, 0);
if (len == 0) {
state = _mm_xor_si128(state, B_);
} else {
state = EncryptBlock(state);
size_t idx = 0;
while (len - idx > BLOCK_SIZE) {
__m128i in = _mm_loadu_si128((__m128i*) (data + idx));
state = _mm_xor_si128(in, state);
state = EncryptBlock(state);
idx += BLOCK_SIZE;
}
state = _mm_xor_si128(state, Pad(data + idx, len - idx));
}
return EncryptBlock(state);
}
bool AesEaxAesni::RawEncrypt(
absl::string_view nonce,
absl::string_view in,
absl::string_view additional_data,
uint8_t *ciphertext,
size_t ciphertext_size) const {
// Sanity check
if (in.size() + TAG_SIZE != ciphertext_size) {
return false;
}
const uint8_t* plaintext = reinterpret_cast<const uint8_t*>(in.data());
// NOTE(bleichen): The author of EAX designed this mode, so that
// it would be possible to compute N and H independently of the encryption.
// So far this possiblity is not used in this implementation.
const __m128i N = OMAC(nonce, 0);
const __m128i H = OMAC(additional_data, 1);
// Compute the initial counter in little endian order.
// EAX uses big endian order, but it is easier to increment
// a counter if it is in little endian order.
__m128i ctr = Reverse(N);
// Initialize mac with the header of the input for the MAC.
__m128i mac = _mm_set_epi32(0x2000000, 0, 0, 0);
uint8_t* out = ciphertext;
size_t idx = 0;
__m128i key_stream;
while (idx + BLOCK_SIZE < in.size()) {
__m128i ctr_big_endian = Reverse(ctr);
// Get the key stream for one message block and compute
// the MAC for the previous ciphertext block or header.
Encrypt2Blocks(mac, ctr_big_endian, &mac, &key_stream);
tholenst
committed
__m128i pt = _mm_loadu_si128(reinterpret_cast<const __m128i*>(plaintext));
__m128i ct = _mm_xor_si128(pt, key_stream);
mac = _mm_xor_si128(mac, ct);
ctr = Increment(ctr);
tholenst
committed
_mm_storeu_si128(reinterpret_cast<__m128i*>(out), ct);
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
plaintext += BLOCK_SIZE;
out += BLOCK_SIZE;
idx += BLOCK_SIZE;
}
// Last block
size_t last_block_size = in.size() - idx;
if (last_block_size > 0) {
__m128i ctr_big_endian = Reverse(ctr);
Encrypt2Blocks(mac, ctr_big_endian, &mac, &key_stream);
__m128i pt = LoadPartialBlock(plaintext, last_block_size);
__m128i ct = _mm_xor_si128(pt, key_stream);
StorePartialBlock(out, last_block_size, ct);
__m128i padded_last_block = Pad(out, last_block_size);
out += last_block_size;
mac = _mm_xor_si128(mac, padded_last_block);
} else {
// Special code for plaintexts of size 0.
mac = _mm_xor_si128(mac, B_);
}
mac = EncryptBlock(mac);
__m128i tag = _mm_xor_si128(mac, N);
tag = _mm_xor_si128(tag, H);
StorePartialBlock(out, TAG_SIZE, tag);
return true;
}
bool AesEaxAesni::RawDecrypt(
absl::string_view nonce,
absl::string_view in,
absl::string_view additional_data,
uint8_t *plaintext,
size_t plaintext_size) const {
__m128i N = OMAC(nonce, 0);
__m128i H = OMAC(additional_data, 1);
const uint8_t* ciphertext = reinterpret_cast<const uint8_t*>(in.data());
const size_t ciphertext_size = in.size();
// Sanity checks: RawDecrypt should always be called with valid sizes.
if (ciphertext_size < TAG_SIZE) {
return false;
}
if (ciphertext_size - TAG_SIZE != plaintext_size) {
return false;
}
// Get the tag from the ciphertext.
tholenst
committed
const __m128i tag = _mm_loadu_si128(
reinterpret_cast<const __m128i*>(&ciphertext[plaintext_size]));
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
// A CBC-MAC is reversible. This allows to pipeline the MAC verification
// by recomputing the MAC for the first half of the ciphertext and
// reversion the MAC for the second half.
__m128i mac_forward = _mm_set_epi32(0x2000000, 0, 0, 0);
__m128i mac_backward = _mm_xor_si128(tag, N);
mac_backward = _mm_xor_si128(mac_backward, H);
// Special case code for empty messages of size 0.
if (plaintext_size == 0) {
mac_forward = _mm_xor_si128(mac_forward, B_);
mac_forward = EncryptBlock(mac_forward);
return EqualBlocks(mac_forward, mac_backward);
}
const size_t last_block = (plaintext_size - 1) / BLOCK_SIZE;
const size_t last_block_size = ((plaintext_size - 1) % BLOCK_SIZE) + 1;
const __m128i* ciphertext_blocks =
reinterpret_cast<const __m128i*>(ciphertext);
__m128i* plaintext_blocks = reinterpret_cast<__m128i*>(plaintext);
__m128i ctr_forward = Reverse(N);
__m128i ctr_backward = Add(ctr_forward, last_block);
__m128i unused = _mm_setzero_si128();
__m128i stream_forward;
__m128i stream_backward;
Encrypt3Decrypt1(
Reverse(ctr_backward), mac_forward, unused, mac_backward,
&stream_backward, &mac_forward, &unused, &mac_backward);
__m128i ct = LoadPartialBlock(
&ciphertext[plaintext_size - last_block_size], last_block_size);
__m128i pt = _mm_xor_si128(ct, stream_backward);
StorePartialBlock(
&plaintext[plaintext_size - last_block_size], last_block_size, pt);
__m128i padded_last_block =
Pad(&ciphertext[plaintext_size - last_block_size], last_block_size);
mac_backward = _mm_xor_si128(mac_backward, padded_last_block);
const size_t mid_block = last_block / 2;
// Decrypts two blocks concurrently as long as there are at least two
// blocks to decrypt. The two blocks are the first block not yet decrypted
// and the last block not yet decrypted. The reason for this is that the
// OMAC can be verified at the same time. mac_forward is the OMAC of leading
// ciphertext blocks that have already been decrypted. mac_backward is the
// partial result for the OMAC up to block last_block - i - 1 that is
// necessary so OMAC of the full encryption results in the tag received from
// the ciphertext.
for (size_t i = 0; i < mid_block; i++) {
ctr_backward = Decrement(ctr_backward);
__m128i ct_forward = _mm_loadu_si128(&ciphertext_blocks[i]);
__m128i ct_backward =
_mm_loadu_si128(&ciphertext_blocks[last_block - i - 1]);
mac_forward = _mm_xor_si128(mac_forward, ct_forward);
Encrypt3Decrypt1(
Reverse(ctr_forward), Reverse(ctr_backward), mac_forward, mac_backward,
&stream_forward, &stream_backward, &mac_forward, &mac_backward);
__m128i plaintext_forward = _mm_xor_si128(ct_forward, stream_forward);
__m128i plaintext_backward = _mm_xor_si128(ct_backward, stream_backward);
_mm_storeu_si128(&plaintext_blocks[i], plaintext_forward);
_mm_storeu_si128(&plaintext_blocks[last_block - i - 1], plaintext_backward);
mac_backward = _mm_xor_si128(mac_backward, ct_backward);
ctr_forward = Increment(ctr_forward);
}
// Decrypts and MACs another block, if there is a single block in the middle.
if (last_block & 1) {
__m128i ct = _mm_loadu_si128(&ciphertext_blocks[mid_block]);
mac_forward = _mm_xor_si128(mac_forward, ct);
Encrypt2Blocks(
Reverse(ctr_forward), mac_forward, &stream_forward, &mac_forward);
__m128i pt = _mm_xor_si128(ct, stream_forward);
_mm_storeu_si128(&plaintext_blocks[mid_block], pt);
}
if (EqualBlocks(mac_forward, mac_backward)) {
return true;
} else {
memset(plaintext, 0, plaintext_size);
return false;
}
}
crypto::tink::util::StatusOr<std::string> AesEaxAesni::Encrypt(
absl::string_view plaintext,
absl::string_view additional_data) const {
// BoringSSL expects a non-null pointer for plaintext and additional_data,
// regardless of whether the size is 0.
plaintext = SubtleUtilBoringSSL::EnsureNonNull(plaintext);
additional_data = SubtleUtilBoringSSL::EnsureNonNull(additional_data);
if (SIZE_MAX - nonce_size_ - TAG_SIZE <= plaintext.size()) {
return util::Status(util::error::INTERNAL, "Plaintext too long");
}
size_t ciphertext_size = plaintext.size() + nonce_size_ + TAG_SIZE;
std::string ciphertext(ciphertext_size, '\0');
const std::string nonce = Random::GetRandomBytes(nonce_size_);
memmove(&ciphertext[0], nonce.data(), nonce_size_);
bool result = RawEncrypt(nonce, plaintext, additional_data,
reinterpret_cast<uint8_t*>(&ciphertext[nonce_size_]),
ciphertext_size - nonce_size_);
if (result) {
return std::move(ciphertext);
} else {
return util::Status(util::error::INTERNAL, "Encryption failed");
}
}
crypto::tink::util::StatusOr<std::string> AesEaxAesni::Decrypt(
absl::string_view ciphertext,
absl::string_view additional_data) const {
// BoringSSL expects a non-null pointer for additional_data,
// regardless of whether the size is 0.
additional_data = SubtleUtilBoringSSL::EnsureNonNull(additional_data);
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
size_t ct_size = ciphertext.size();
if (ct_size < nonce_size_ + TAG_SIZE) {
return util::Status(util::error::INTERNAL, "Ciphertext too short");
}
size_t out_size = ct_size - TAG_SIZE - nonce_size_;
absl::string_view nonce = ciphertext.substr(0, nonce_size_);
absl::string_view encrypted =
ciphertext.substr(nonce_size_, ct_size - nonce_size_);
std::string res(out_size, '\0');
bool result = RawDecrypt(nonce, encrypted, additional_data,
reinterpret_cast<uint8_t*>(&res[0]), out_size);
if (!result) {
return util::Status(util::error::INTERNAL, "Decryption failed");
} else {
return std::move(res);
}
}
} // namespace subtle
} // namespace tink
} // namespace crypto
#endif // __AES__
#endif // __SSE4_1__