Newer
Older
This document contains instructions and Go code snippets for common tasks in
[Tink](https://github.com/google/tink).
```sh
cd $GOPATH/go/src/github.com/google/tink/go
go test ./...
```
Golang Tink API also supports [Bazel](https://www.bazel.build) builds. To run
the tests using bazel:
```sh
cd $GOPATH/go/src/github.com/google/tink/go
bazel build ... && bazel test ...
```
## GoDoc
[here](https://godoc.org/github.com/google/tink).
[_Primitives_](PRIMITIVES.md) represent cryptographic operations offered by
Tink, hence they form the core of Tink API. A primitive is just an interface
that specifies what operations are offered by the primitive. A primitive can
have multiple implementations, and you choose a desired implementation by
using a key of corresponding type (see the [this
section](KEY-MANAGEMENT.md#key-keyset-and-keysethandle) for details).
A list of primitives and their implemenations currently supported by Tink in
Golang can be found [here](PRIMITIVES.md#golang).
AEAD encryption assures the confidentiality and authenticity of the data. This
primitive is CPA secure.
"github.com/google/tink/go/aead"
"github.com/google/tink/go/keyset"
kh, err := keyset.NewHandle(aead.AES256GCMKeyTemplate())
if err != nil {
log.Fatal(err)
}
a, err := aead.New(kh)
if err != nil {
log.Fatal(err)
}
ct, err := a.Encrypt([]byte("this data needs to be encrypted"), []byte("associated data"))
if err != nil {
log.Fatal(err)
}
pt, err := a.Decrypt(ct, []byte("associated data"))
if err != nil {
log.Fatal(err)
}
fmt.Printf("Cipher text: %s\nPlain text: %s\n", ct, pt)
MAC computes a tag for a given message that can be used to authenticate a
message. MAC protects data integrity as well as provides for authenticity of the
message.
"github.com/google/tink/go/keyset"
"github.com/google/tink/go/mac"
kh, err := keyset.NewHandle(mac.HMACSHA256Tag256KeyTemplate())
if err != nil {
log.Fatal(err)
}
m, err := mac.New(kh)
if err != nil {
log.Fatal(err)
}
mac, err := m.ComputeMAC([]byte("this data needs to be MACed"))
if err != nil {
log.Fatal(err)
}
if m.VerifyMAC(mac, []byte("this data needs to be MACed")); err != nil {
log.fatal("MAC verification failed")
}
fmt.Println("MAC verification succeeded.")
Unlike AEAD, implementations of this interface are not semantically secure,
because encrypting the same plaintext always yields the same ciphertext.
"github.com/google/tink/go/daead"
"github.com/google/tink/go/keyset"
kh, err := keyset.NewHandle(daead.AESSIVKeyTemplate())
if err != nil {
log.Fatal(err)
}
d, err := daead.New(kh)
if err != nil {
log.Fatal(err)
}
ct1, err := d.EncryptDeterministically([]byte("this data needs to be encrypted"), []byte("additional data"))
if err != nil {
log.Fatal(err)
}
ct2, err := d.EncryptDeterministically([]byte("this data needs to be encrypted"), []byte("additional data"))
if err != nil {
log.Fatal(err)
}
if !bytes.Equal(ct1, ct2) {
log.Fatal("cipher texts are not equal")
}
fmt.Print("Cipher texts are equal.\n")
pt, err := d.DecryptDeterministically(ct1, []byte("additional data"))
if err != nil {
log.Fatal(err)
}
fmt.Printf("Plain text: %s\n", pt)
}
```
### Signature
To sign data using Tink you can use ECDSA or ED25519 key templates.
```go
package main
import (
"github.com/google/tink/go/keyset"
"github.com/google/tink/go/signature"
khPriv, err := keyset.NewHandle(signature.ECDSAP256KeyTemplate())
if err != nil {
log.Fatal(err)
}
s, err := signature.NewSigner(khPriv)
if err != nil {
log.Fatal(err)
}
a, err := s.Sign([]byte("this data needs to be signed"))
if err != nil {
log.Fatal(err)
}
khPub, err := khPriv.Public()
if err != nil {
log.Fatal(err)
}
v, err := signature.NewVerifier(khPub)
if err := v.Verify(a, []byte("this data needs to be signed")); err != nil {
log.Fatal("signature verification failed")
}
fmt.Println("Signature verification succeeded.")
The functionality of Hybrid Encryption is represented as a pair of primitives
(interfaces):
* `HybridEncrypt` for encryption of data
* `HybridDecrypt` for decryption
Implementations of these interfaces are secure against adaptive chosen
ciphertext attacks.
In addition to plaintext, the encryption takes an extra parameter, contextInfo.
It usually is public data implicit from the context. It is bound to the
resulting ciphertext, which allows for checking the integrity of contextInfo
(but there are no guarantees in regards to the secrecy or authenticity of
contextInfo).
```go
package main
import (
"github.com/google/tink/go/hybrid"
"github.com/google/tink/go/keyset"
)
khPriv, err := keyset.NewHandle(hybrid.ECIESHKDFAES128CTRHMACSHA256KeyTemplate())
if err != nil {
if err != nil {
log.Fatal(err)
}
if err != nil {
log.Fatal(err)
}
ct, err := he.Encrypt([]byte("secret message"), []byte("context info"))
if err != nil {
log.Fatal(err)
}
pt, err := hd.Decrypt(ct, []byte("context info"))
if err != nil {
fmt.Printf("Cipher text: %s\nPlain text: %s\n", ct, pt)
}
Tink APIs work with GCP and AWS KMS (cf. more info on
[Key Management Systems](KEY-MANAGEMENT.md#key-management-systems)
and [Credentials](KEY-MANAGEMENT.md#credentials)).
"fmt"
"github.com/google/tink/go/aead"
"github.com/google/tink/go/core/registry"
"github.com/google/tink/go/integration/gcpkms"
"github.com/google/tink/go/keyset"
keyURI = "gcp-kms://......" // customize for your key
credentialsPath = "/mysecurestorage/credentials.json"
gcpclient, err := gcpkms.NewGCPClient(keyURI)
if err != nil {
log.Fatal(err)
}
_, err = gcpclient.LoadCredentials(credentialsPath)
}
registry.RegisterKMSClient(gcpclient)
dek := aead.AES128CTRHMACSHA256KeyTemplate()
kh, err := keyset.NewHandle(aead.KMSEnvelopeAEADKeyTemplate(keyURI, dek))
if err != nil {
}
a, err := aead.New(kh)
if err != nil {
ct, err := a.Encrypt([]byte("secret message"), []byte("associated data"))
if err != nil {
log.Fatal(err)
}
pt, err := a.Decrypt(ct, []byte("associated data"))
if err != nil {
log.Fatal(err)
}
fmt.Printf("Cipher text: %s\nPlain text: %s\n", ct, pt)
}
To take advantage of key rotation and other key management features, you usually
do not work with single keys, but with keysets. Keysets are just sets of keys
with some additional parameters and metadata.
Internally Tink stores keysets as Protocol Buffers, but you can work with
keysets via a wrapper called keyset handle. You can generate a new keyset and
obtain its handle using a KeyTemplate. KeysetHandle objects enforce certain
restrictions that prevent accidental leakage of the sensitive key material.
"github.com/google/tink/go/aead"
"github.com/google/tink/go/keyset"
// Other key templates can also be used.
kh, err := keyset.NewHandle(aead.AES128GCMKeyTemplate())
if err != nil {
log.Fatal(err)
}
fmt.Println(kh.String())
Key templates are available for MAC, digital signatures, AEAD encryption, DAEAD
encryption and hybrid encryption.
Key Template Type | Key Template
------------------ | ------------
AEAD | aead.AES128CTRHMACSHA256KeyTemplate()
AEAD | aead.AES128GCMKeyTemplate()
AEAD | aead.AES256CTRHMACSHA256KeyTemplate()
AEAD | aead.AES256GCMKeyTemplate()
AEAD | aead.ChaCha20Poly1305KeyTemplate()
AEAD | aead.XChaCha20Poly1305KeyTemplate()
DAEAD | daead.AESSIVKeyTemplate()
MAC | mac.HMACSHA256Tag128KeyTemplate()
MAC | mac.HMACSHA256Tag256KeyTemplate()
MAC | mac.HMACSHA512Tag256KeyTemplate()
MAC | mac.HMACSHA512Tag512KeyTemplate()
Signature | signature.ECDSAP256KeyTemplate()
Signature | signature.ECDSAP384KeyTemplate()
Signature | signature.ECDSAP521KeyTemplate()
Hybrid | hybrid.ECIESHKDFAES128GCMKeyTemplate()
Hybrid | hybrid.ECIESHKDFAES128CTRHMACSHA256KeyTemplate()
To avoid accidental leakage of sensitive key material, one should avoid mixing
keyset generation and usage in code. To support the separation of these
activities Tink provides a command-line tool, [Tinkey](TINKEY.md), which can be
used for common key management tasks.
After generating key material, you might want to persist it to a storage system.
Tink supports persisting the keys after encryption to any io.Writer and
io.Reader implementations.
"fmt"
"log"
"github.com/golang/protobuf/proto"
"github.com/google/tink/go/aead"
"github.com/google/tink/go/core/registry"
"github.com/google/tink/go/integration/gcpkms"
"github.com/google/tink/go/keyset"
)
const (
keyURI = "gcp-kms://..."
credentialsPath = "/mysecurestorage/..."
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
// Generate a new key.
kh1, err := keyset.NewHandle(aead.AES128GCMKeyTemplate())
if err != nil {
log.Fatal(err)
}
// Fetch the master key from a KMS.
gcpClient := gcpkms.NewGCPClient(keyURI)
_, err := gpcClient.LoadCredentials(credentialsPath)
if err != nil {
log.Fatal(err)
}
registry.RegisterKMSClient(gcpClient)
backend, err := gcpClient.GetAEAD(keyURI)
if err != nil {
log.Fatal(err)
}
masterKey, err = aead.NewKMSEnvelopeAead(*aead.AES256GCMKeyTemplate(), backend)
if err != nil {
log.Fatal(err)
}
// An io.Reader and io.Writer implementation which simply writes to memory.
memKeyset := &keyset.MemReaderWriter{}
// Write encrypts the keyset handle with the master key and writes to the
// io.Writer implementation (memKeyset). We recommend you encrypt the keyset
// handle before persisting it.
if err := kh1.Write(memKeyset, masterKey); err != nil {
log.Fatal(err)
}
// Read reads the encrypted keyset handle back from the io.Reader implementation
// and decrypts it using the master key.
kh2, err := keyset.Read(memKeyset, masterKey)
if err != nil {
log.Fatal(err)
}
if !proto.Equal(kh1.Keyset(), kh2.Keyset()) {
log.Fatal("key handlers are not equal")
}
fmt.Println("Key handlers are equal.")