Newer
Older
/*
* Copyright 2014 Google Inc. All rights reserved.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <algorithm>
#include "flatbuffers/idl.h"
#include "flatbuffers/util.h"
namespace flatbuffers {
const char *const kTypeNames[] = {
#define FLATBUFFERS_TD(ENUM, IDLTYPE, CTYPE, JTYPE, GTYPE, NTYPE, PTYPE) \
IDLTYPE,
FLATBUFFERS_GEN_TYPES(FLATBUFFERS_TD)
#undef FLATBUFFERS_TD
nullptr
};
const char kTypeSizes[] = {
#define FLATBUFFERS_TD(ENUM, IDLTYPE, CTYPE, JTYPE, GTYPE, NTYPE, PTYPE) \
sizeof(CTYPE),
FLATBUFFERS_GEN_TYPES(FLATBUFFERS_TD)
#undef FLATBUFFERS_TD
};
// The enums in the reflection schema should match the ones we use internally.
// Compare the last element to check if these go out of sync.
static_assert(BASE_TYPE_UNION ==
static_cast<BaseType>(reflection::Union),
"enums don't match");
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
static void Error(const std::string &msg) {
throw msg;
}
// Ensure that integer values we parse fit inside the declared integer type.
static void CheckBitsFit(int64_t val, size_t bits) {
auto mask = (1ll << bits) - 1; // Bits we allow to be used.
if (bits < 64 &&
(val & ~mask) != 0 && // Positive or unsigned.
(val | mask) != -1) // Negative.
Error("constant does not fit in a " + NumToString(bits) + "-bit field");
}
// atot: templated version of atoi/atof: convert a string to an instance of T.
template<typename T> inline T atot(const char *s) {
auto val = StringToInt(s);
CheckBitsFit(val, sizeof(T) * 8);
return (T)val;
}
template<> inline bool atot<bool>(const char *s) {
return 0 != atoi(s);
}
template<> inline float atot<float>(const char *s) {
return static_cast<float>(strtod(s, nullptr));
}
template<> inline double atot<double>(const char *s) {
return strtod(s, nullptr);
}
template<> inline Offset<void> atot<Offset<void>>(const char *s) {
return Offset<void>(atoi(s));
}
// Declare tokens we'll use. Single character tokens are represented by their
// ascii character code (e.g. '{'), others above 256.
#define FLATBUFFERS_GEN_TOKENS(TD) \
TD(Eof, 256, "end of file") \
TD(StringConstant, 257, "string constant") \
TD(IntegerConstant, 258, "integer constant") \
TD(FloatConstant, 259, "float constant") \
TD(Identifier, 260, "identifier") \
TD(Table, 261, "table") \
TD(Struct, 262, "struct") \
TD(Enum, 263, "enum") \
TD(Union, 264, "union") \
TD(NameSpace, 265, "namespace") \
TD(RootType, 266, "root_type") \
TD(FileIdentifier, 267, "file_identifier") \
TD(FileExtension, 268, "file_extension") \
TD(Include, 269, "include") \
TD(Attribute, 270, "attribute")
#ifdef __GNUC__
__extension__ // Stop GCC complaining about trailing comma with -Wpendantic.
#endif
#define FLATBUFFERS_TOKEN(NAME, VALUE, STRING) kToken ## NAME = VALUE,
FLATBUFFERS_GEN_TOKENS(FLATBUFFERS_TOKEN)
#undef FLATBUFFERS_TOKEN
#define FLATBUFFERS_TD(ENUM, IDLTYPE, CTYPE, JTYPE, GTYPE, NTYPE, PTYPE) \
kToken ## ENUM,
FLATBUFFERS_GEN_TYPES(FLATBUFFERS_TD)
#undef FLATBUFFERS_TD
};
static std::string TokenToString(int t) {
static const char *tokens[] = {
#define FLATBUFFERS_TOKEN(NAME, VALUE, STRING) STRING,
FLATBUFFERS_GEN_TOKENS(FLATBUFFERS_TOKEN)
#undef FLATBUFFERS_TOKEN
#define FLATBUFFERS_TD(ENUM, IDLTYPE, CTYPE, JTYPE, GTYPE, NTYPE, PTYPE) \
IDLTYPE,
FLATBUFFERS_GEN_TYPES(FLATBUFFERS_TD)
#undef FLATBUFFERS_TD
};
if (t < 256) { // A single ascii char token.
std::string s;
s.append(1, static_cast<char>(t));
return s;
} else { // Other tokens.
return tokens[t - 256];
}
}
Wouter van Oortmerssen
committed
// Parses exactly nibbles worth of hex digits into a number, or error.
int64_t Parser::ParseHexNum(int nibbles) {
for (int i = 0; i < nibbles; i++)
if (!isxdigit(cursor_[i]))
Error("escape code must be followed by " + NumToString(nibbles) +
" hex digits");
std::string target(cursor_, cursor_ + nibbles);
auto val = StringToInt(target.c_str(), 16);
Wouter van Oortmerssen
committed
cursor_ += nibbles;
return val;
}
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
void Parser::Next() {
doc_comment_.clear();
bool seen_newline = false;
for (;;) {
char c = *cursor_++;
token_ = c;
switch (c) {
case '\0': cursor_--; token_ = kTokenEof; return;
case ' ': case '\r': case '\t': break;
case '\n': line_++; seen_newline = true; break;
case '{': case '}': case '(': case ')': case '[': case ']': return;
case ',': case ':': case ';': case '=': return;
case '.':
if(!isdigit(*cursor_)) return;
Error("floating point constant can\'t start with \".\"");
break;
case '\"':
attribute_ = "";
while (*cursor_ != '\"') {
if (*cursor_ < ' ' && *cursor_ >= 0)
Error("illegal character in string constant");
if (*cursor_ == '\\') {
cursor_++;
switch (*cursor_) {
case 'n': attribute_ += '\n'; cursor_++; break;
case 't': attribute_ += '\t'; cursor_++; break;
case 'r': attribute_ += '\r'; cursor_++; break;
Wouter van Oortmerssen
committed
case 'b': attribute_ += '\b'; cursor_++; break;
case 'f': attribute_ += '\f'; cursor_++; break;
case '\"': attribute_ += '\"'; cursor_++; break;
case '\\': attribute_ += '\\'; cursor_++; break;
Wouter van Oortmerssen
committed
case '/': attribute_ += '/'; cursor_++; break;
case 'x': { // Not in the JSON standard
cursor_++;
attribute_ += static_cast<char>(ParseHexNum(2));
break;
}
case 'u': {
cursor_++;
ToUTF8(static_cast<int>(ParseHexNum(4)), &attribute_);
break;
}
default: Error("unknown escape code in string constant"); break;
}
} else { // printable chars + UTF-8 bytes
attribute_ += *cursor_++;
}
}
cursor_++;
token_ = kTokenStringConstant;
return;
case '/':
if (*cursor_ == '/') {
const char *start = ++cursor_;
while (*cursor_ && *cursor_ != '\n' && *cursor_ != '\r') cursor_++;
if (*start == '/') { // documentation comment
if (cursor_ != source_ && !seen_newline)
Error("a documentation comment should be on a line on its own");
doc_comment_.push_back(std::string(start + 1, cursor_));
}
break;
}
// fall thru
default:
if (isalpha(static_cast<unsigned char>(c)) || c == '_') {
// Collect all chars of an identifier:
const char *start = cursor_ - 1;
while (isalnum(static_cast<unsigned char>(*cursor_)) ||
*cursor_ == '_')
cursor_++;
attribute_.clear();
attribute_.append(start, cursor_);
// First, see if it is a type keyword from the table of types:
#define FLATBUFFERS_TD(ENUM, IDLTYPE, CTYPE, JTYPE, GTYPE, NTYPE, \
PTYPE) \
if (attribute_ == IDLTYPE) { \
token_ = kToken ## ENUM; \
return; \
}
FLATBUFFERS_GEN_TYPES(FLATBUFFERS_TD)
#undef FLATBUFFERS_TD
// If it's a boolean constant keyword, turn those into integers,
// which simplifies our logic downstream.
if (attribute_ == "true" || attribute_ == "false") {
attribute_ = NumToString(attribute_ == "true");
token_ = kTokenIntegerConstant;
return;
}
// Check for declaration keywords:
if (attribute_ == "table") { token_ = kTokenTable; return; }
if (attribute_ == "struct") { token_ = kTokenStruct; return; }
if (attribute_ == "enum") { token_ = kTokenEnum; return; }
if (attribute_ == "union") { token_ = kTokenUnion; return; }
if (attribute_ == "namespace") { token_ = kTokenNameSpace; return; }
if (attribute_ == "root_type") { token_ = kTokenRootType; return; }
if (attribute_ == "include") { token_ = kTokenInclude; return; }
if (attribute_ == "attribute") { token_ = kTokenAttribute; return; }
if (attribute_ == "file_identifier") {
token_ = kTokenFileIdentifier;
return;
}
if (attribute_ == "file_extension") {
token_ = kTokenFileExtension;
return;
}
// If not, it is a user-defined identifier:
token_ = kTokenIdentifier;
return;
} else if (isdigit(static_cast<unsigned char>(c)) || c == '-') {
const char *start = cursor_ - 1;
while (isdigit(static_cast<unsigned char>(*cursor_))) cursor_++;
if (*cursor_ == '.') {
cursor_++;
while (isdigit(static_cast<unsigned char>(*cursor_))) cursor_++;
// See if this float has a scientific notation suffix. Both JSON
// and C++ (through strtod() we use) have the same format:
if (*cursor_ == 'e' || *cursor_ == 'E') {
cursor_++;
if (*cursor_ == '+' || *cursor_ == '-') cursor_++;
while (isdigit(static_cast<unsigned char>(*cursor_))) cursor_++;
}
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
token_ = kTokenFloatConstant;
} else {
token_ = kTokenIntegerConstant;
}
attribute_.clear();
attribute_.append(start, cursor_);
return;
}
std::string ch;
ch = c;
if (c < ' ' || c > '~') ch = "code: " + NumToString(c);
Error("illegal character: " + ch);
break;
}
}
}
// Check if a given token is next, if so, consume it as well.
bool Parser::IsNext(int t) {
bool isnext = t == token_;
if (isnext) Next();
return isnext;
}
// Expect a given token to be next, consume it, or error if not present.
void Parser::Expect(int t) {
if (t != token_) {
Error("expecting: " + TokenToString(t) + " instead got: " +
TokenToString(token_));
}
Next();
}
void Parser::ParseNamespacing(std::string *id, std::string *last) {
while (IsNext('.')) {
*id += ".";
*id += attribute_;
if (last) *last = attribute_;
Expect(kTokenIdentifier);
}
}
EnumDef *Parser::LookupEnum(const std::string &id) {
auto ed = enums_.Lookup(GetFullyQualifiedName(id));
// id may simply not have a namespace at all, so check that too.
if (!ed) ed = enums_.Lookup(id);
return ed;
}
void Parser::ParseTypeIdent(Type &type) {
std::string id = attribute_;
Expect(kTokenIdentifier);
ParseNamespacing(&id, nullptr);
auto enum_def = LookupEnum(id);
if (enum_def) {
type = enum_def->underlying_type;
if (enum_def->is_union) type.base_type = BASE_TYPE_UNION;
} else {
type.base_type = BASE_TYPE_STRUCT;
type.struct_def = LookupCreateStruct(id);
// Parse any IDL type.
void Parser::ParseType(Type &type) {
if (token_ >= kTokenBOOL && token_ <= kTokenSTRING) {
type.base_type = static_cast<BaseType>(token_ - kTokenNONE);
} else {
if (token_ == kTokenIdentifier) {
ParseTypeIdent(type);
} else if (token_ == '[') {
Next();
Type subtype;
ParseType(subtype);
if (subtype.base_type == BASE_TYPE_VECTOR) {
// We could support this, but it will complicate things, and it's
// easier to work around with a struct around the inner vector.
Error("nested vector types not supported (wrap in table first).");
}
if (subtype.base_type == BASE_TYPE_UNION) {
// We could support this if we stored a struct of 2 elements per
// union element.
Error("vector of union types not supported (wrap in table first).");
}
type = Type(BASE_TYPE_VECTOR, subtype.struct_def, subtype.enum_def);
type.element = subtype.base_type;
Expect(']');
} else {
Error("illegal type syntax");
}
}
}
FieldDef &Parser::AddField(StructDef &struct_def,
const std::string &name,
const Type &type) {
auto &field = *new FieldDef();
field.value.offset =
FieldIndexToOffset(static_cast<voffset_t>(struct_def.fields.vec.size()));
field.name = name;
field.file = struct_def.file;
field.value.type = type;
if (struct_def.fixed) { // statically compute the field offset
auto size = InlineSize(type);
auto alignment = InlineAlignment(type);
// structs_ need to have a predictable format, so we need to align to
// the largest scalar
struct_def.minalign = std::max(struct_def.minalign, alignment);
struct_def.PadLastField(alignment);
field.value.offset = static_cast<voffset_t>(struct_def.bytesize);
struct_def.bytesize += size;
}
if (struct_def.fields.Add(name, &field))
Error("field already exists: " + name);
return field;
}
void Parser::ParseField(StructDef &struct_def) {
std::string name = attribute_;
std::vector<std::string> dc = doc_comment_;
Expect(kTokenIdentifier);
Expect(':');
Type type;
ParseType(type);
if (struct_def.fixed && !IsScalar(type.base_type) && !IsStruct(type))
Error("structs_ may contain only scalar or struct fields");
FieldDef *typefield = nullptr;
if (type.base_type == BASE_TYPE_UNION) {
// For union fields, add a second auto-generated field to hold the type,
// with _type appended as the name.
typefield = &AddField(struct_def, name + "_type",
type.enum_def->underlying_type);
}
auto &field = AddField(struct_def, name, type);
if (token_ == '=') {
Next();
if (!IsScalar(type.base_type))
Error("default values currently only supported for scalars");
ParseSingleValue(field.value);
}
if (type.enum_def &&
IsScalar(type.base_type) &&
!struct_def.fixed &&
!type.enum_def->attributes.Lookup("bit_flags") &&
!type.enum_def->ReverseLookup(static_cast<int>(
StringToInt(field.value.constant.c_str()))))
Error("enum " + type.enum_def->name +
" does not have a declaration for this field\'s default of " +
field.value.constant);
field.doc_comment = dc;
ParseMetaData(field);
field.deprecated = field.attributes.Lookup("deprecated") != nullptr;
auto hash_name = field.attributes.Lookup("hash");
if (hash_name) {
switch (type.base_type) {
case BASE_TYPE_INT:
case BASE_TYPE_UINT: {
if (FindHashFunction32(hash_name->constant.c_str()) == nullptr)
Error("Unknown hashing algorithm for 32 bit types: " +
hash_name->constant);
break;
}
case BASE_TYPE_LONG:
case BASE_TYPE_ULONG: {
if (FindHashFunction64(hash_name->constant.c_str()) == nullptr)
Error("Unknown hashing algorithm for 64 bit types: " +
hash_name->constant);
break;
}
default:
Error("only int, uint, long and ulong data types support hashing.");
}
}
if (field.deprecated && struct_def.fixed)
Error("can't deprecate fields in a struct");
field.required = field.attributes.Lookup("required") != nullptr;
if (field.required && (struct_def.fixed ||
IsScalar(field.value.type.base_type)))
Error("only non-scalar fields in tables may be 'required'");
field.key = field.attributes.Lookup("key") != nullptr;
if (field.key) {
if (struct_def.has_key)
Error("only one field may be set as 'key'");
struct_def.has_key = true;
if (!IsScalar(field.value.type.base_type)) {
field.required = true;
if (field.value.type.base_type != BASE_TYPE_STRING)
Error("'key' field must be string or scalar type");
}
}
auto nested = field.attributes.Lookup("nested_flatbuffer");
if (nested) {
if (nested->type.base_type != BASE_TYPE_STRING)
Error("nested_flatbuffer attribute must be a string (the root type)");
if (field.value.type.base_type != BASE_TYPE_VECTOR ||
field.value.type.element != BASE_TYPE_UCHAR)
Error("nested_flatbuffer attribute may only apply to a vector of ubyte");
// This will cause an error if the root type of the nested flatbuffer
// wasn't defined elsewhere.
LookupCreateStruct(nested->constant);
}
if (typefield) {
// If this field is a union, and it has a manually assigned id,
// the automatically added type field should have an id as well (of N - 1).
auto attr = field.attributes.Lookup("id");
if (attr) {
auto id = atoi(attr->constant.c_str());
auto val = new Value();
val->type = attr->type;
val->constant = NumToString(id - 1);
typefield->attributes.Add("id", val);
}
}
Expect(';');
}
void Parser::ParseAnyValue(Value &val, FieldDef *field) {
switch (val.type.base_type) {
case BASE_TYPE_UNION: {
assert(field);
if (!field_stack_.size() ||
field_stack_.back().second->value.type.base_type != BASE_TYPE_UTYPE)
Error("missing type field before this union value: " + field->name);
auto enum_idx = atot<unsigned char>(
field_stack_.back().first.constant.c_str());
auto enum_val = val.type.enum_def->ReverseLookup(enum_idx);
if (!enum_val) Error("illegal type id for: " + field->name);
val.constant = NumToString(ParseTable(*enum_val->struct_def));
break;
}
case BASE_TYPE_STRUCT:
val.constant = NumToString(ParseTable(*val.type.struct_def));
break;
case BASE_TYPE_STRING: {
auto s = attribute_;
Expect(kTokenStringConstant);
val.constant = NumToString(builder_.CreateString(s).o);
break;
}
case BASE_TYPE_VECTOR: {
Expect('[');
val.constant = NumToString(ParseVector(val.type.VectorType()));
break;
}
case BASE_TYPE_INT:
case BASE_TYPE_UINT:
case BASE_TYPE_LONG:
case BASE_TYPE_ULONG: {
if (field && field->attributes.Lookup("hash") &&
(token_ == kTokenIdentifier || token_ == kTokenStringConstant)) {
ParseHash(val, field);
} else {
ParseSingleValue(val);
}
break;
}
default:
ParseSingleValue(val);
break;
}
}
void Parser::SerializeStruct(const StructDef &struct_def, const Value &val) {
auto off = atot<uoffset_t>(val.constant.c_str());
assert(struct_stack_.size() - off == struct_def.bytesize);
builder_.Align(struct_def.minalign);
builder_.PushBytes(&struct_stack_[off], struct_def.bytesize);
struct_stack_.resize(struct_stack_.size() - struct_def.bytesize);
builder_.AddStructOffset(val.offset, builder_.GetSize());
}
uoffset_t Parser::ParseTable(const StructDef &struct_def) {
Expect('{');
size_t fieldn = 0;
for (;;) {
if ((!strict_json_ || !fieldn) && IsNext('}')) break;
std::string name = attribute_;
if (!IsNext(kTokenStringConstant))
Expect(strict_json_ ? kTokenStringConstant : kTokenIdentifier);
auto field = struct_def.fields.Lookup(name);
if (!field) Error("unknown field: " + name);
if (struct_def.fixed && (fieldn >= struct_def.fields.vec.size()
|| struct_def.fields.vec[fieldn] != field)) {
Error("struct field appearing out of order: " + name);
}
Expect(':');
Value val = field->value;
ParseAnyValue(val, field);
field_stack_.push_back(std::make_pair(val, field));
fieldn++;
if (IsNext('}')) break;
Expect(',');
}
for (auto it = field_stack_.rbegin();
it != field_stack_.rbegin() + fieldn; ++it) {
if (it->second->used)
Error("field set more than once: " + it->second->name);
it->second->used = true;
}
for (auto it = field_stack_.rbegin();
it != field_stack_.rbegin() + fieldn; ++it) {
it->second->used = false;
}
if (struct_def.fixed && fieldn != struct_def.fields.vec.size())
Error("incomplete struct initialization: " + struct_def.name);
auto start = struct_def.fixed
? builder_.StartStruct(struct_def.minalign)
: builder_.StartTable();
for (size_t size = struct_def.sortbysize ? sizeof(largest_scalar_t) : 1;
size;
size /= 2) {
// Go through elements in reverse, since we're building the data backwards.
for (auto it = field_stack_.rbegin();
it != field_stack_.rbegin() + fieldn; ++it) {
auto &value = it->first;
auto field = it->second;
if (!struct_def.sortbysize || size == SizeOf(value.type.base_type)) {
switch (value.type.base_type) {
#define FLATBUFFERS_TD(ENUM, IDLTYPE, CTYPE, JTYPE, GTYPE, NTYPE, \
PTYPE) \
case BASE_TYPE_ ## ENUM: \
builder_.Pad(field->padding); \
Wouter van Oortmerssen
committed
if (struct_def.fixed) { \
builder_.PushElement(atot<CTYPE>(value.constant.c_str())); \
} else { \
builder_.AddElement(value.offset, \
atot<CTYPE>( value.constant.c_str()), \
atot<CTYPE>(field->value.constant.c_str())); \
Wouter van Oortmerssen
committed
} \
break;
FLATBUFFERS_GEN_TYPES_SCALAR(FLATBUFFERS_TD);
#undef FLATBUFFERS_TD
#define FLATBUFFERS_TD(ENUM, IDLTYPE, CTYPE, JTYPE, GTYPE, NTYPE, \
PTYPE) \
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
case BASE_TYPE_ ## ENUM: \
builder_.Pad(field->padding); \
if (IsStruct(field->value.type)) { \
SerializeStruct(*field->value.type.struct_def, value); \
} else { \
builder_.AddOffset(value.offset, \
atot<CTYPE>(value.constant.c_str())); \
} \
break;
FLATBUFFERS_GEN_TYPES_POINTER(FLATBUFFERS_TD);
#undef FLATBUFFERS_TD
}
}
}
}
for (size_t i = 0; i < fieldn; i++) field_stack_.pop_back();
if (struct_def.fixed) {
builder_.ClearOffsets();
builder_.EndStruct();
// Temporarily store this struct in a side buffer, since this data has to
// be stored in-line later in the parent object.
auto off = struct_stack_.size();
struct_stack_.insert(struct_stack_.end(),
builder_.GetBufferPointer(),
builder_.GetBufferPointer() + struct_def.bytesize);
builder_.PopBytes(struct_def.bytesize);
return static_cast<uoffset_t>(off);
} else {
return builder_.EndTable(
start,
static_cast<voffset_t>(struct_def.fields.vec.size()));
}
}
uoffset_t Parser::ParseVector(const Type &type) {
int count = 0;
for (;;) {
if ((!strict_json_ || !count) && IsNext(']')) break;
Value val;
val.type = type;
field_stack_.push_back(std::make_pair(val, nullptr));
count++;
if (IsNext(']')) break;
Wouter van Oortmerssen
committed
builder_.StartVector(count * InlineSize(type) / InlineAlignment(type),
InlineAlignment(type));
for (int i = 0; i < count; i++) {
// start at the back, since we're building the data backwards.
auto &val = field_stack_.back().first;
switch (val.type.base_type) {
#define FLATBUFFERS_TD(ENUM, IDLTYPE, CTYPE, JTYPE, GTYPE, NTYPE, PTYPE) \
case BASE_TYPE_ ## ENUM: \
if (IsStruct(val.type)) SerializeStruct(*val.type.struct_def, val); \
else builder_.PushElement(atot<CTYPE>(val.constant.c_str())); \
break;
FLATBUFFERS_GEN_TYPES(FLATBUFFERS_TD)
#undef FLATBUFFERS_TD
}
field_stack_.pop_back();
}
builder_.ClearOffsets();
return builder_.EndVector(count);
}
void Parser::ParseMetaData(Definition &def) {
if (IsNext('(')) {
for (;;) {
auto name = attribute_;
Expect(kTokenIdentifier);
if (known_attributes_.find(name) == known_attributes_.end())
Error("user define attributes must be declared before use: " + name);
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
auto e = new Value();
def.attributes.Add(name, e);
if (IsNext(':')) {
ParseSingleValue(*e);
}
if (IsNext(')')) break;
Expect(',');
}
}
}
bool Parser::TryTypedValue(int dtoken,
bool check,
Value &e,
BaseType req) {
bool match = dtoken == token_;
if (match) {
e.constant = attribute_;
if (!check) {
if (e.type.base_type == BASE_TYPE_NONE) {
e.type.base_type = req;
} else {
Error(std::string("type mismatch: expecting: ") +
kTypeNames[e.type.base_type] +
", found: " +
kTypeNames[req]);
}
}
Next();
}
return match;
}
int64_t Parser::ParseIntegerFromString(Type &type) {
int64_t result = 0;
// Parse one or more enum identifiers, separated by spaces.
const char *next = attribute_.c_str();
do {
const char *divider = strchr(next, ' ');
std::string word;
if (divider) {
word = std::string(next, divider);
next = divider + strspn(divider, " ");
} else {
word = next;
next += word.length();
}
if (type.enum_def) { // The field has an enum type
auto enum_val = type.enum_def->vals.Lookup(word);
if (!enum_val)
Error("unknown enum value: " + word +
", for enum: " + type.enum_def->name);
result |= enum_val->value;
} else { // No enum type, probably integral field.
if (!IsInteger(type.base_type))
Error("not a valid value for this field: " + word);
// TODO: could check if its a valid number constant here.
const char *dot = strrchr(word.c_str(), '.');
if (!dot) Error("enum values need to be qualified by an enum type");
std::string enum_def_str(word.c_str(), dot);
std::string enum_val_str(dot + 1, word.c_str() + word.length());
auto enum_def = LookupEnum(enum_def_str);
if (!enum_def) Error("unknown enum: " + enum_def_str);
auto enum_val = enum_def->vals.Lookup(enum_val_str);
if (!enum_val) Error("unknown enum value: " + enum_val_str);
result |= enum_val->value;
}
} while(*next);
return result;
}
void Parser::ParseHash(Value &e, FieldDef* field) {
assert(field);
Value *hash_name = field->attributes.Lookup("hash");
switch (e.type.base_type) {
case BASE_TYPE_INT:
case BASE_TYPE_UINT: {
auto hash = FindHashFunction32(hash_name->constant.c_str());
uint32_t hashed_value = hash(attribute_.c_str());
e.constant = NumToString(hashed_value);
break;
}
case BASE_TYPE_LONG:
case BASE_TYPE_ULONG: {
auto hash = FindHashFunction64(hash_name->constant.c_str());
uint64_t hashed_value = hash(attribute_.c_str());
e.constant = NumToString(hashed_value);
break;
}
default:
assert(0);
}
Next();
}
void Parser::ParseSingleValue(Value &e) {
// First check if this could be a string/identifier enum value:
if (e.type.base_type != BASE_TYPE_STRING &&
e.type.base_type != BASE_TYPE_NONE &&
(token_ == kTokenIdentifier || token_ == kTokenStringConstant)) {
e.constant = NumToString(ParseIntegerFromString(e.type));
Next();
} else if (TryTypedValue(kTokenIntegerConstant,
IsScalar(e.type.base_type),
e,
BASE_TYPE_INT) ||
TryTypedValue(kTokenFloatConstant,
IsFloat(e.type.base_type),
e,
BASE_TYPE_FLOAT) ||
TryTypedValue(kTokenStringConstant,
e.type.base_type == BASE_TYPE_STRING,
e,
BASE_TYPE_STRING)) {
} else {
Error("cannot parse value starting with: " + TokenToString(token_));
}
}
StructDef *Parser::LookupCreateStruct(const std::string &name) {
Brett Cooley
committed
std::string qualified_name = GetFullyQualifiedName(name);
auto struct_def = structs_.Lookup(qualified_name);
// Unqualified names may simply have no namespace at all, so try that too.
if (!struct_def) struct_def = structs_.Lookup(name);
if (!struct_def) {
// Rather than failing, we create a "pre declared" StructDef, due to
// circular references, and check for errors at the end of parsing.
struct_def = new StructDef();
Brett Cooley
committed
structs_.Add(qualified_name, struct_def);
struct_def->name = name;
struct_def->predecl = true;
Wouter van Oortmerssen
committed
struct_def->defined_namespace = namespaces_.back();
}
return struct_def;
}
void Parser::ParseEnum(bool is_union) {
std::vector<std::string> enum_comment = doc_comment_;
std::string enum_name = attribute_;
Expect(kTokenIdentifier);
auto &enum_def = *new EnumDef();
enum_def.name = enum_name;
if (!files_being_parsed_.empty()) enum_def.file = files_being_parsed_.top();
enum_def.doc_comment = enum_comment;
enum_def.is_union = is_union;
enum_def.defined_namespace = namespaces_.back();
if (enums_.Add(GetFullyQualifiedName(enum_name), &enum_def))
Error("enum already exists: " + enum_name);
if (is_union) {
enum_def.underlying_type.base_type = BASE_TYPE_UTYPE;
enum_def.underlying_type.enum_def = &enum_def;
} else {
if (proto_mode_) {
enum_def.underlying_type.base_type = BASE_TYPE_SHORT;
} else {
// Give specialized error message, since this type spec used to
// be optional in the first FlatBuffers release.
if (!IsNext(':')) Error("must specify the underlying integer type for this"
" enum (e.g. \': short\', which was the default).");
// Specify the integer type underlying this enum.
ParseType(enum_def.underlying_type);
if (!IsInteger(enum_def.underlying_type.base_type))
Error("underlying enum type must be integral");
}
// Make this type refer back to the enum it was derived from.
enum_def.underlying_type.enum_def = &enum_def;
}
ParseMetaData(enum_def);
Expect('{');
if (is_union) enum_def.vals.Add("NONE", new EnumVal("NONE", 0));
do {
auto value_name = attribute_;
auto full_name = value_name;
std::vector<std::string> value_comment = doc_comment_;
Expect(kTokenIdentifier);
if (is_union) ParseNamespacing(&full_name, &value_name);
auto prevsize = enum_def.vals.vec.size();
Wouter van Oortmerssen
committed
auto value = enum_def.vals.vec.size()
? enum_def.vals.vec.back()->value + 1
: 0;
auto &ev = *new EnumVal(value_name, value);
if (enum_def.vals.Add(value_name, &ev))
Error("enum value already exists: " + value_name);
ev.doc_comment = value_comment;
ev.struct_def = LookupCreateStruct(full_name);
}
if (IsNext('=')) {
ev.value = atoi(attribute_.c_str());
Expect(kTokenIntegerConstant);
if (prevsize && enum_def.vals.vec[prevsize - 1]->value >= ev.value)
Error("enum values must be specified in ascending order");
}
} while (IsNext(proto_mode_ ? ';' : ',') && token_ != '}');
Wouter van Oortmerssen
committed
if (enum_def.attributes.Lookup("bit_flags")) {
for (auto it = enum_def.vals.vec.begin(); it != enum_def.vals.vec.end();
++it) {
if (static_cast<size_t>((*it)->value) >=
SizeOf(enum_def.underlying_type.base_type) * 8)
Error("bit flag out of range of underlying integral type");
(*it)->value = 1LL << (*it)->value;
Wouter van Oortmerssen
committed
}
}
StructDef &Parser::StartStruct() {
std::string name = attribute_;
Expect(kTokenIdentifier);
auto &struct_def = *LookupCreateStruct(name);
if (!struct_def.predecl) Error("datatype already exists: " + name);
struct_def.predecl = false;
struct_def.name = name;
if (!files_being_parsed_.empty()) struct_def.file = files_being_parsed_.top();
// Move this struct to the back of the vector just in case it was predeclared,
// to preserve declaration order.
*remove(structs_.vec.begin(), structs_.vec.end(), &struct_def) = &struct_def;
return struct_def;
}
void Parser::ParseDecl() {
std::vector<std::string> dc = doc_comment_;
bool fixed = IsNext(kTokenStruct);
if (!fixed) Expect(kTokenTable);
auto &struct_def = StartStruct();
struct_def.doc_comment = dc;
struct_def.fixed = fixed;
ParseMetaData(struct_def);
struct_def.sortbysize =
struct_def.attributes.Lookup("original_order") == nullptr && !fixed;
Expect('{');
while (token_ != '}') ParseField(struct_def);
auto force_align = struct_def.attributes.Lookup("force_align");
if (fixed && force_align) {
auto align = static_cast<size_t>(atoi(force_align->constant.c_str()));
if (force_align->type.base_type != BASE_TYPE_INT ||
align < struct_def.minalign ||
align > 16 ||
align & (align - 1))
Error("force_align must be a power of two integer ranging from the"
"struct\'s natural alignment to 16");
struct_def.minalign = align;
}
struct_def.PadLastField(struct_def.minalign);
// Check if this is a table that has manual id assignments
auto &fields = struct_def.fields.vec;
if (!struct_def.fixed && fields.size()) {
size_t num_id_fields = 0;
for (auto it = fields.begin(); it != fields.end(); ++it) {
if ((*it)->attributes.Lookup("id")) num_id_fields++;
}
// If any fields have ids..
if (num_id_fields) {
// Then all fields must have them.
if (num_id_fields != fields.size())
Error("either all fields or no fields must have an 'id' attribute");
// Simply sort by id, then the fields are the same as if no ids had
// been specified.
std::sort(fields.begin(), fields.end(),
[](const FieldDef *a, const FieldDef *b) -> bool {
auto a_id = atoi(a->attributes.Lookup("id")->constant.c_str());
auto b_id = atoi(b->attributes.Lookup("id")->constant.c_str());
return a_id < b_id;
});
// Verify we have a contiguous set, and reassign vtable offsets.
for (int i = 0; i < static_cast<int>(fields.size()); i++) {
if (i != atoi(fields[i]->attributes.Lookup("id")->constant.c_str()))
Error("field id\'s must be consecutive from 0, id " +
NumToString(i) + " missing or set twice");
fields[i]->value.offset = FieldIndexToOffset(static_cast<voffset_t>(i));
}
}
}
Wouter van Oortmerssen
committed
// Check that no identifiers clash with auto generated fields.
// This is not an ideal situation, but should occur very infrequently,
// and allows us to keep using very readable names for type & length fields
// without inducing compile errors.
auto CheckClash = [&fields, &struct_def](const char *suffix,
BaseType basetype) {
auto len = strlen(suffix);
for (auto it = fields.begin(); it != fields.end(); ++it) {
auto &name = (*it)->name;
if (name.length() > len &&
name.compare(name.length() - len, len, suffix) == 0 &&
(*it)->value.type.base_type != BASE_TYPE_UTYPE) {
auto field = struct_def.fields.Lookup(
name.substr(0, name.length() - len));
if (field && field->value.type.base_type == basetype)
Error("Field " + name +
" would clash with generated functions for field " +
field->name);
}
}
};
CheckClash("_type", BASE_TYPE_UNION);
CheckClash("Type", BASE_TYPE_UNION);
CheckClash("_length", BASE_TYPE_VECTOR);
CheckClash("Length", BASE_TYPE_VECTOR);
CheckClash("_byte_vector", BASE_TYPE_STRING);
CheckClash("ByteVector", BASE_TYPE_STRING);
Expect('}');
}
bool Parser::SetRootType(const char *name) {
root_struct_def_ = structs_.Lookup(GetFullyQualifiedName(name));
return root_struct_def_ != nullptr;
Brett Cooley
committed
std::string Parser::GetFullyQualifiedName(const std::string &name) const {
Namespace *ns = namespaces_.back();
// Early exit if we don't have a defined namespace, or if the name is already
// partially qualified
if (ns->components.size() == 0 || name.find(".") != std::string::npos) {
return name;
}
std::stringstream stream;